MOTIVATION

- **Drawback** of exemplar-based inpainting approaches
 - single exemplar-based (SE) (Criminisi et al.) most similar candidate patch \(\rightarrow \) dominant role
 - sparse representation based (SR) (Shen et al.) less similar candidate patches \(\rightarrow \) little effect

- **Greedy & Information Lost**
- **Reformulate** inpainting task
 - sequential low-rank matrix recovery and completion analogous to **Collaborative Filtering**
 - **Higher** level incomplete signal
 - single target patch \(\rightarrow \) target patch + several similar intact candidate patches
 - **Simultaneously Fitting** & Information from candidate patches **all combined**

- **Assumption**
 - low-dimensional additive sparse linear model
- **Domain** change
 - image patch bases \(\rightarrow \) self-adaptively constructed basis set
 - original image domain \(\rightarrow \) transformed domain

FRAMEWORK

- **Inpainting**
 - **Compute patch priority on** \(\delta \Omega \), select \(\Psi_{pm} \) with the highest priority as the target
 - **Copy pixel values of** \(\Psi_{pm} \) from recovered \(\Psi \)
 - **Update** \(\Omega \) & \(\delta \Omega \)

- **Find** \(N \)-1-candidate patches most similar to \(\Psi_{pm} \)
 - construct incomplete data matrix \(X \) & weight matrix \(W \)

- **Recover** \(X \) using WSNMF

- **Update** \(\Omega \) & \(\delta \Omega \)

- **all pixels** in \(\Omega \) filled?

APPROACH

- **Construction of data matrix**
 - target patch \(\Psi_{pm} \) (incomplete)
 - \(N \)-1 patches \(\Psi_{q_j, j=2,...,N} \) in \(\Phi \) most similar to \(\Psi_{pm} \) (intact)

\[
\Psi_{q_j} = \arg \min_{\Psi_{q_j}, \Psi_{q_k}, j=2,...,N} d(\Psi_{pm}, \Psi_{q_j})
\]

- distance \(d(,.) \) is SSD defined in the already filled parts of both patches
- data matrix \(X \)

\[
X = [\Psi_{pm}, \Psi_{q_2}, ..., \Psi_{q_j}, ..., \Psi_{q_N}] = [X_1, X_2, ..., X_N] \in \mathbb{R}^{M \times N}
\]

- **Construction of weight matrix**
 - \(W_1 \rightarrow \) binary weights

\[
W_{ij} = \begin{cases}
1 & \text{if } X_{ji} \text{ is in the source region} \\
0 & \text{if } X_{ji} \text{ is in the target region}
\end{cases}
\]

- \(W_2 \sim W_N \rightarrow \) decreasing function reflecting decay in the confidence from \(\Psi_{q_j} \) to \(\Psi_{q_k} \)

\[
W_q = \frac{\min(d(\Psi_{pm, \Psi_{q_j}}))}{d(\Psi_{pm, \Psi_{q_j}})} = \frac{d(\Psi_{pm, \Psi_{q_j}})}{d(\Psi_{pm, \Psi_{q_k}})}, \text{ for } i = 1, ..., M; j = 2, ..., N
\]

- **WSNMF** \(J_{WSNMF}(X,UV) = \frac{1}{2} \sum_{q} W_q (X_q - [UV]_q)^2 + \lambda \sum_{q} V_q \)

EXPERIMENTAL RESULTS

- **EM procedure based WSNMF**
 - Weighted NMF \(\rightarrow \) matrix completion
 - sparseness constraint on coefficient matrix \(V \) \(\rightarrow \) enforce sharp inpainting results
 - objective function to be minimized

\[
J_{WSNMF}(X,UV) = \frac{1}{2} \sum_{q} W_q (X_q - [UV]_q)^2 + \lambda \sum_{q} V_q
\]

- **WSNMF** \(\rightarrow \) maximum-likelihood problem
- **Expectation step**: compute filled-in matrix \(Y \) from the current model estimation

\[
Y \leftarrow W \odot X + (I_{M \times N} - W) \odot (UV)
\]

- **Maximization step**: utilize unweighted Sparse NMF algorithm (SENSC) on \(Y \) to reestimate the decomposition model

- **structure and texture inpainting**

- **composite texture inpainting**

- **unwanted artifact prevention**

- **From left to right are original image, target region marked in green, inpainting results by SE, SR, and proposed algorithm**

CONCLUSIONS

- **more adequate exploitation** of available information from multiple exemplars
- capable of inferring **both structure and composite textures** of large missing region
- **less greedy** to prevent unwanted artifacts
- **sharp** inpainting results due to the introduction of **sparseness** prior on the combination coefficients