Meta-Learning to Detect Rare Objects
Yu-Xiong Wang, Deva Ramanan, Martial Hebert
Email: lyuxiongw, deva, hebert@ics.cmu.edu

Motivation
- Problem statement: under-explored few-shot object detection
 - Task: learn a detector for novel classes with few labeled bounding box examples
 - Challenge: classify & localize multiple objects & tackle distracting background
- Key insight: base-to-novel meta-knowledge transfer
- Meta-level network: operate on the space of model parameters
- Model dynamics: transform few-shot to large-sample detection models

Meta-Learning Based Object Detection
- Meta-learning procedure
 - An effective framework: general framework for few-shot object detection
 - Model dynamics: meta-level network
 - Challenge: deal with different concepts & few training samples

Within-Domain Few-Shot Detection
- PASCAL VOC benchmark: 15 base → 5 novel classes
 - Detector: Faster R-CNN pre-trained on ImageNet
 - Novelness: have seen global image-level labels of novel classes
- MS-COCO benchmark: 60 base → 20 novel classes
 - Detector: Faster R-CNN trained from scratch
 - Novelness: have seen novel classes as background without any labels

Ablation Studies
- Input to T: few-shot classification vs. detection
- Structure of T: robust to specific implementations

Cross-Domain Generalization
- COCO → PASCAL
 - Setting: 60 COCO classes as base → 20 PASCAL classes as novel
- COCO → ImageNet
 - Setting: 80 COCO classes as base → 50 ImageNet classes as novel

Conclusion
- Meta-knowledge: category-shared parameters or parameter dynamics in detectors
 - Simultaneously tackle few-shot classification and localization in a coherent way
 - Generality: apply to different types of detectors & a variety of realistic settings