Motivation

- **Problem statement:** few-shot 3D human motion prediction

- **Input Sequence:** X

- **Prediction Sequence:** \hat{Y}

- **Time**

- **Key insight:** good generalization from few examples relies on
 - A generic initial model
 - An effective strategy for adapting this model to novel tasks

- **Our approach:** proactive and adaptive meta-learning (PAML)

 - **Model-agnostic meta-learning:** generic initialization through meta-learning [1]
 - **Model regression network:** learning-to-learn transformation from few-shot to many-shot models [2]
 - **Novel combination:** an integrated, end-to-end framework

Meta-Learning for Human Motion Prediction

- **Motion predictor P_0:** (e.g., learner; historical sequence $X \rightarrow$ future sequence \hat{Y})

- **Setup:** learn from a meta-set—a collection of k-shot prediction tasks T

- **Meta-training:** train P_0 on small $\mathcal{D}_{train} = \{(X, Y^*)\}$ that achieves high performance on \mathcal{D}_{val} for different prediction tasks on \mathcal{D}_{test} of known action classes

- **Meta-testing:** adapt P_0 to solve prediction tasks on \mathcal{T}_{test} of novel action classes

Proactive Meta-Learner: General Model Initialization

- **Model-agnostic meta-learning (MAML):** meta-learn a universal predictor under plain SGD updates [1]

- **Model adaptation to task T_i:** $\theta_i = \theta - \alpha \nabla_{\theta} L_{\mathcal{T}_i}(P_i)$

- **Model-objective:** maximal performance on \mathcal{D}_{val} of task T_i

 $$ \min_{\theta} \sum_{i} \mathcal{L}_{\mathcal{T}_i}(P_i) = \min_{\theta} \sum_{i} \left(P_i - \nabla_{\theta} L_{\mathcal{T}_i}(P_i) \right) $$

- **Meta-objective:** a general-purpose initial θ across tasks: $\theta = \theta - \beta \nabla_{\theta} \sum_{i} \mathcal{L}_{\mathcal{T}_i}(P_i)$

Adaptive Meta-Learner: Model Adaptation Strategy

- **Model regression network (MRN):** guide model adaptation through meta-learning [2]

 - **Key insight:** a generic non-linear transformation H from few-shot to many-shot model parameters

 - **Extension of tasks:** original image classification \rightarrow our motion prediction

 - **Data:** explicitly leverage the original large training sets of known action classes

 - **Estimation of H as a regression function during meta-training:** $\min_{\theta} \sum_i \mathcal{L}_{\mathcal{T}_i}(\theta_i - \theta_i')^2$

 θ_i: learned on \mathcal{D}_{val}, by using SGD

 θ_i': learned on a large set of annotated sequences

An Integrated, End-to-End Framework

- **Integrated model adaptation during meta-training & meta-testing:** $\theta = H_{\theta}(\theta - \alpha \nabla_{\theta} L_{\mathcal{T}_i}(P_i))$

- **Integrated meta-objective during meta-training**

 $$ \min_{\theta} \sum_{i} \mathcal{L}_{\mathcal{T}_i}(P_i) = \min_{\theta} \sum_{i} \left(P_i - \nabla_{\theta} L_{\mathcal{T}_i}(P_i) \right) - \frac{1}{2} \lambda \left(\theta - \theta_i \right)^2 $$

Ablation Analysis and Sanity Check

- **Complementary components:** model initialization vs. adaptation

- **Improvements with more training sequences:** close to the oracle

- **Sanity check:** effectiveness for classification on mini-ImageNet

Conclusions and Applications

- **Extension of few-shot learning in a broader context:** image classification \rightarrow motion prediction (imitation)

- **Meta-learning:** jointly learn generic model initialization & effective adaptation

- **Real-world scenario:** learn in an online, streaming manner with limited training data e.g., human-robot interaction and collaboration

Recent Publications
