Low-Shot Learning from Imaginary Data

Yu-Xiong Wang¹,², Ross Girshick¹, Martial Hebert², Bharath Hariharan¹,³

¹Facebook AI Research (FAIR) ²Carnegie Mellon University ³Cornell University

Motivation
- Problem statement: low-shot learning
- Key insight: leverage structure of the visual world
 - Modes of variation are shared across classes
 - Humans can visualize a novel object in other poses or surroundings
- Our approach: an end-to-end model that "hallucinates" novel training samples
 - Hallucination criterion: produces examples useful for classification
 - Training hallucinator with meta-learning: jointly optimizes a meta-learner [1] with a hallucinator

Meta-Learning with Learned Hallucination
- A general framework: agnostic to meta-learning algorithms
- Hallucinator: parametric function \(h(x, z) \)
- Meta-training the hallucinator
 - Augmented training set \(\mathcal{S}_{aug} \)
 - End-to-end training: \(G \) along with \(h \)
- Benefits of end-to-end training
 - Directly produces hallucinations useful for class distinctions
 - Makes allowance for any errors in the hallucination
 - No extra annotation & no heuristics

(Hallucination is performed in feature space; images shown for illustration)

Experiment Protocol
- Tradeoffs between base and novel classes in joint evaluation: a novel class prior \(p \)
- A new evaluation: top-5 accuracy
 - In only-novel label space
 - In only-base label space
 - In joint label space without and with a cross-validated \(p \)

Meta-Learning
- Setup: learn from a meta-set—a collection of low-shot classification tasks
- Meta-training: train a classification algorithm \(h \) on small \(\mathcal{S}_{aug} \) that achieves high accuracy on \(\mathcal{D} \) for different tasks on \(\mathcal{D}_{base} \)
- Meta-testing: use \(h \) to solve novel classification tasks on \(\mathcal{D}_{base} \)

ImageNet low-shot classification

Unpacking the Performance Gain
- Sophisticated hallucination architectures are necessary
- Meta-learning the hallucinator is necessary
- Diverse samples are processed

Visualizing the Learned Hallucinations
- t-SNE visualizations: on novel classes for prototypical networks
- Our hallucinator vs. baseline Gaussian hallucinator: match the class distributions more closely & with different seed examples capture different parts of the space
- Clustering around the class boundaries: perhaps a consequence of discriminative training of the hallucinator

Conclusion and Future Work
- Low-shot learning that uses a hallucinator to generate additional examples and trains the hallucinator end-to-end with meta-learning
- Significant gains irrespective of meta-learning approaches
- Future work: pin down exactly the effect of the hallucinated examples & increase the diversity of the hallucinations

References