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Abstract

One of the key limitations of modern deep learning based
approaches lies in the amount of data required to train
them. Humans, on the other hand, can learn to recognize
novel categories from just a few examples. Instrumental to
this rapid learning ability is the compositional structure of
concept representations in the human brain — something
that deep learning models are lacking. In this work we
make a step towards bridging this gap between human and
machine learning by introducing a simple regularization
technique that allows the learned representation to be de-
composable into parts. We evaluate the proposed approach
on three datasets: CUB-200-2011, SUN397, and ImageNet,
and demonstrate that our compositional representations re-
quire fewer examples to learn classifiers for novel cate-
gories, outperforming state-of-the-art few-shot learning ap-
proaches by a significant margin.

1. Introduction
Consider the images representing four categories from

the CUB-200-2011 dataset [40] in Figure 1. Given a repre-
sentation learned using the first three categories, shown in
red, can a classifier for the fourth category shown in green
be learned from just a few, or even a single example - a prob-
lem known as few-shot learning [38, 21, 18, 12]? Clearly,
this depends on the properties of the representation. Ac-
cording to cognitive science one property that is crucial for
solving this problem is compositionality. Human represen-
tations of concepts are decomposable into parts [6, 17], such
as the ones shown in the top right corners of the images
in Figure 1, allowing for classifiers to be rapidly learned
for novel concepts through combination of known primi-
tives [13] (see the example of the novel bird category - all
of its discriminative attributes have already been observed
in the first three categories). These ideas have been highly
influential in computer vision, with some of the first models
for visual concepts being built as compositions of parts and
relations [26, 27, 42].

However, state-of-the-art methods for virtually all visual

Figure 1. Images from four categories of the CUB-200-2011
datasets, together with some of their attribute annotations. We pro-
pose to learn image representations that are decomposable over the
attributes and thus can learn new categories from few examples.

recognition tasks are based on deep learning [24, 20]. The
parameters of deep neural networks are optimized for the
end task with gradient-based methods, resulting in repre-
sentations that are not easily interpretable. There has been
a lot of effort for qualitative interpretation of these repre-
sentations [45, 46]. Very recently a quantitative approach
for evaluating the compositionality of deep representations
has been proposed [3]. The authors posit that a feature en-
coding of an image is compositional if it can be represented
as a sum of the encodings of attributes describing the image
and design an algorithm to quantify this property. They also
observe that representations that are more compositional ex-
hibit a better generalization behavior. In this work we turn
the compositionality measure proposed in [3] into a con-
straint for training neural networks, forcing learned image
representations to be decomposable into parts.

Our method for learning compositional representations
for visual recognition takes as input a dataset of images to-
gether with their class labels and category-level attribute an-
notations. The attributes can be both purely visual, such as
object parts - beak shape, or scene elements - grass,
and more abstract, such as openness of a scene. To en-
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force the learned representation to be decomposable over
these attributes we turn the compositionality measure of [3]
into a regularization term in a loss function. In particular
given an image with its corresponding attribute annotations,
like the ones shown in Figure 1, we jointly learn a CNN for
the image embedding and a linear layer for the attribute em-
bedding. We then constrain the image representation to be
equal to the sum of the attribute representations. Intuitively,
applied together with a classification loss, this regulariza-
tion forces the optimization to chose a representation that is
more compositional over the attributes out of the space of
all possible discriminative representations.

This constraint, however, implies that exhaustive at-
tribute annotations are available. Such an assumption is
not realistic for most of the image domains. To address
this issue, we propose a relaxed version of the composition-
ality regularizer. We evaluate our approach in a few-shot
recognition setting on three datasets of different sizes and
domains: CUB-200-2011 [40] for fine grained recognition,
SUN397 for scene classification [43] and ImageNet [9] for
object classification. We demonstrate a significant improve-
ment in generalization performance on all three datasets.
In particular, our model learned with the proposed regular-
ization achieves a 6.9% top-5 accuracy improvement over
the baseline in the most challenging 1-shot scenario on the
CUB-200-2011 dataset. Overall, we demonstrate state-of-
the-art results on all three datasets in a variety of settings.

One obvious limitation of the proposed approach is that
it requires additional annotations. One might ask, how ex-
pensive it is to collect the attribute labels, and, more impor-
tantly, how to even define the vocabulary of attributes for
an arbitrary dataset. To illustrate that collecting category-
level attributes is in fact relatively easy even for large-scale
datasets, we label 159 attributes for a subset of the Ima-
geNet categories defined in [15]. A crucial detail is that
the attributes have to be labeled on the category, not on
the image level, which allowed one of the authors to col-
lect the annotations in just three days. A representation
learned with these attributes achieves state-of-the-art results
in a few-shot evaluation setting. We are planning to release
our collected attribute annotations together with the code
and trained models. More details on the annotations pro-
cess are provided in Section 3.4.

Our contributions are three-fold. (1) We propose the
first approach for learning deep compositional representa-
tions in Section 3. Our method takes images together with
their attribute annotations as input and applies a soft reg-
ularizer to enforce the image representation to be decom-
posable over the attributes. (2) We illustrate the simplicity
of collecting attribute annotations on a subset of the Ima-
geNet dataset in Section 3.4. (3) We provide a comprehen-
sive analysis of the learned representation in the context of
few-shot learning on three datasets. The evaluation in Sec-

tion 6.1 demonstrates that the proposed approach results in
a representation that generalizes significantly better and re-
quires fewer examples to learn novel categories.

2. Related Work
Few-shot learning is a classical problem of recognition

with only a few training examples [38]. Lake et al. [21] pro-
posed to explicitly encode compositionality and causality
properties with bayesian probabilistic programs. Learning
then boils down to constructing programs that best explain
the observations and can be done efficiently with a single
example per category. This approach is limited however by
the fact that the programs have to be manually defined for
each new domain.

State-of-the-art methods for few-shot learning can be
categorized into the ones based on metric learning [18, 39,
36, 44] — training a network to predict whether two images
belong to the same category, and the ones built around the
idea of meta-learning [12, 33] — training with a loss that
explicitly enforces easy adaptation of the weights to new
categories with only a few examples. Separately from these
approaches, some authors propose to learn to generate addi-
tional examples for unseen categories [41, 15]. Recently it
has been shown that it is crucial to use cosine similarity as
a distance measure to achieve top results in few shot learn-
ing evaluation [14]. Even more recently the authors of [1]
demonstrated that a simple baseline approach — a linear
layer learned on top of a frozen CNN, achieves state-of-
the-art results on two few shot learning benchmarks. The
key to the success of their baseline is using cosine classi-
fication function and applying standard data augmentation
techniques during few-shot training. Here we confirm their
observation about the surprising efficiency of this baseline
in a more realistic setting and demonstrate that learning a
classifier on top of the compositional feature representation
results in a significant improvement in performance.

Compositional representations have been extensively
studied in the cognitive science literature [6, 17, 13] with
Biderman’s Recognition-By-Components theory being es-
pecially influential in computer vision. One especially at-
tractive property of compositional representations is that
they allow learning novel concepts from a few or even a
single example by composing known primitives. Lake et
al. [22] argue that compositionality is one of the key build-
ing blocks of human intelligence that is missing in the
state-of-the-art AI systems. Although early computer vision
models have been inherently compositional [26, 27, 42],
building upon feature hierarchies [11, 47] and part-based
models [30, 10], modern deep learning systems [24, 20, 16]
do not explicitly model concepts as combinations of parts.

Analysis of internal representations learned by deep net-
works [45, 35, 25, 46, 19] has shown that some of the neu-
rons in the hidden layers do encode object and scene parts.



However, all these works observe that the discovered com-
positional structure is limited and qualitative analysis of
network activations is highly subjective. Very recently an
approach for quantitative evaluation of compositionality of
learned representations has been proposed in [3]. We build
on top of the formalism proposed in that work, but instead
of using it to measure the properties of a learned model turn
it into a training objective.

Among works that explicitly address compositionality in
deep learning models, Misra et al. [29] propose to train
a network that predicts classifiers for novel concepts by
composing existing classifiers for the parts. For instance,
their model can obtain a classifier for the category large
elephant by combining independently learned classifiers
for categories elephant and large without seeing a sin-
gle image with a label large elephant. In contrast, we
propose to train a single model that internally decomposes
concepts into parts and show results in a few-shot setting.
In [37] the authors address the notion of spatial composi-
tionality, proposing to constrain network representations of
objects in an image to be independent from each other and
from the background. They then demonstrate that networks
trained with this constraint generalize better to the test dis-
tribution. Our work is similar in that we too propose to
enforce decomposition of network representation into parts
with the goal of increasing its generalization abilities. Our
approach, however, does not require spatial, or even image-
level supervision and thus can handle abstract attributes, as
well as be readily applied to large scale datasets.

Learning with attributes has been studied for a vari-
ety of applications. Most notably, zero-shot learning meth-
ods use category-level attributes to recognize novel classes
without seeing any training examples [4, 5, 8, 23]. To this
end they propose to learn models that take attributes as in-
put and predict image classifiers, allowing them to recog-
nize never before seen classes as long as they can be de-
scribed by the known attribute vocabulary. Very recently
it has ben shown [2] that such attribute-based classifiers
also require less data for training. In contrast, our method
uses attributes to learn compositional image representations
that require fewer training examples to recognize novel con-
cepts. Crucially, unlike the method described above, our
approach does not require attribute annotations for novel
classes.

Another context in which attributes have been used is
that of active [31, 7] and semi-supervised learning [34].
In [31] the authors use attribute classifiers to mine hard neg-
ative images for a category based on user feedback. In [7] a
method that explicitly constructs classifiers by combing dis-
criminative attributes provided by the user into DNF formu-
las is proposed. Our method is offline and does not require
user interactions. In [34] the attributes are used to explic-
itly provide constraints when learning from a small number

of labeled and a large number of unlabeled images. Our
approach uses attributes to constraint a learned deep image
representation, resulting in these constraints being implic-
itly encoded by the network.

3. Our Approach
3.1. Problem Formulation

We consider the task of few-shot image classification.
Formally, we have a set of base categories Cbase and a cor-
responding dataset Sbase = {(xi, yi)} , xi ∈ X , yi ∈ Cbase
which contains a large number of examples per category.
We also have a set of unseen novel categories Cnovel and a
corresponding dataset Snovel = {(xi, yi)} , xi ∈ X , yi ∈
Cnovel which consists of only n examples per category,
where n could be as few as one. We learn a representa-
tion model fθ parametrized by θ on Sbase that can be used
for the downstream classification task on Snovel.

While there might exist many possible representations
that can be learned and achieve similar generalization per-
formance on the base categories, we argue that the one
that is decomposable into shared parts will be able to
generalize better to novel categories from fewer exam-
ples. Consider again the example in Figure 1. Intu-
itively, a model that has internally learned to recognize
the attributes beak:curved, wing color:grey, and
breast color:white is able to obtain a classifier of
the never-before-seen bird species simply by composition.
But how can this intuitive notion of compositionality be for-
mulated in the space of deep representation models?

Inspired by [3], on the base dataset Sbase, we aug-
ment the category labels yi ∈ Cbase of the examples xi,
with information about the structure of the examples in the
form of derivations D(xi), defined over as set of primi-
tives D0. That is, D(xi) is a subset of D0. In practice,
these primitives can be seen as parts, or, more broadly, at-
tributes capturing the compositional structure of the exam-
ples. Derivations are then simply sets of attribute labels. For
instance, for the CUB-200-2011 dataset the set of primitives
consists of items such as beak:curved, beak:nidle,
etc., and a derivation for the image in Figure 1a is then
{beak:curved, wing color:brown, ...}.

We now leverage derivations to learn a compositional
representation on the base categories. Note that for the
novel categories, we have only access to the category la-
bels without any derivations. We will first explain measure
of compositionality in representations and then introduce it
as constraints to learn deep compositional representations.

3.2. Measure of Compositionality

We make use of the framework for reasoning about com-
positional properties of black-box image representations
in [3]. A representation f is compositional over D0 if each
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Figure 2. Overview of the proposed compositional regularization. The goal is to learn an image representation that is decomposable into
parts by utilizing attribute annotations. First an image is encoded with a CNN and its attributes with a linear layer (a). We then propose two
forms of regularizations: TRE shown in (b) and Soft TRE shown in (c). The former is a hard constraint forcing the image representation to
be fully described by the attributes. The latter is a relaxed version that allows for a part of the representation to encode other information
about the images (shown in gray).

f(x) is determined by D(x). For a fully compositional f
there exists such a function f̂ with parameters η that satis-
fies the following equality:

f(xi) = f̂η(di,1) ∗ f̂η(di,2) ∗ ...f̂η(di,k), (1)

where ∗ is a composition operator and D(xi) = {di,j}kj=1

is the derivation of xi. In practice, ∗ is set to be a sum and
f̂η is implemented as a linear embedding layer [3]. With
this choice of operators, Eq. (1) is fully differentiable over
η and thus can be optimized with gradient descent:

η∗ = argmin
η

∑
i

σ(f(xi), f̂η(Di)), (2)

where σ is a differentiable distance function, such as Eu-
clidean or Cosine similarity, and f̂η(Di) =

∑
j f̂η(di,j). In

other words, we aim to search for a representation f̂η that al-
lows an explicitly compositional model to approximate the
true f as closely as possible. Intuitively, the closer this ap-
proximation is, the more compositional f is. A Tree Recon-
struction Error (TRE) is then proposed in [3] to quantify the
compositionality of f :

TRE(X ) = 1

n

∑
i

σ(f(xi), f̂η∗(Di)), (3)

which is evaluated on the validation set. A lower TRE
score indicates higher compositionality.

3.3. Compositionality Regularization

Motivated by the observation made in [3] that the rep-
resentations with lower TRE score (higher composition-
ality) exhibit better generalization behavior, we propose to
convert this measure into a regularization approach. The
overview of our approach is shown in Figure 2. We first
observe that the objective function

∑
i σ(fθ(xi), f̂η(Di) in

Eq. (2) is differentiable not only with respect to η but also
with respect to the parameters θ of f . This allows us to
jointly optimize both fθ and f̂η .

Next we observe that the derivations in [3] are defined
on the instance level. While this fine-grained supervision
is necessary for an accurate measure, it is expensive to ob-
tain. Our key insight is that instances in any given category
share the same compositional structure. Indeed, all seag-
ulls have curved beaks and short necks, so we can signifi-
cantly reduce the annotation effort by redefining derivations
as D(xi) = D(yi). One objection might be that the beak is
not visible in all the images of seagulls. While this is true,
we argue that such labeling noise can be ignored in practice,
which is verified empirically in Section 6.1.

Hard constraints: Based on these observations, we pro-
pose a Tree Reconstruction Error Loss:

LTRE(θ, η) =
∑
i

σ(fθ(xi), f̂η(D(yi))). (4)

It can be applied as a regularization term together with a
classification loss Lcls, such as softmax. Intuitively, it puts
a constraint on the gradient-based optimization of parame-
ters θ, forcing it to choose out of all the representations that
solve the classification problem equally well the one that is
also compositional with respect to the predefined vocabu-
lary of primitivesD0. A visualization of LTRE is presented
in Figure 2b. Overall we use the following loss for training:

L(θ, η) = Lcls(θ) + λLTRE(θ, η), (5)

where λ is a hyper-parameter that balances the importance
of the two objectives.

Soft constraints: One crucial assumption made in
Eq. (1) is that the derivations D are exhaustive. For that
equation to hold, D has to capture all the aspects of the
image that are important for the downstream classifica-
tion task. However, even in such a narrow domain as that
of CUB-200-2011, exhaustive attribute annotations are ex-
tremely expensive to obtain. In fact, it is practically im-
possible for larger scale datasets such as SUN [43] or Ima-
geNet [9]. To mitigate this issue, we propose a soft version
of the loss in Eq. (4) that allows for partial attribute supervi-
sion. By maximizing the similarity between each attribute’s



Figure 3. Examples of categories from three datasets used in the paper together with samples of attribute annotations.

embedding and the image embedding individually, we ob-
tain a Soft Tree Reconstruction Error Loss:

LSTRE(θ, η) =
∑
i,j

σ′(fθ(xi), f̂η(di,j)), (6)

where σ′ is a dot product operation (see Figure 2c for a visu-
alization). It is easy to see that this formulation is equivalent
to multi-label classification. In contrast to the hard variant
in Eq. (4), it allows for a part of the image encoding f to
represent the information not captured by the attribute an-
notations. More formally, Eq. (4) enforces the exact equal-
ity fθ(xi) =

∑
j f̂η(di,j), whereas Eq. (6) enforces a softer

constraint fθ(xi) =
∑
j f̂η(di,j) + w, where w accounts

for a part of the image representation not described by the
attributes (show in grey in Figure 2c). In Section 4.3 we
empirically verify that this relaxation is critical for obtain-
ing top performance.

3.4. Collecting Attribute Annotations for ImageNet

We use three dataset for experimental evaluation: CUB-
200-2011 [40], SUN397 [43] and ImageNet [9]. Samples
of images from different categories of the three datasets to-
gether with their attribute annotations are shown in Figure 3.
As can be seen from the figure, our method handles concrete
visual attributes like material and color as well as abstract
attributes, such as openness or symmetry. For the first two
datasets attribute annotations are publicly available but for
ImageNet we collect them ourselves. Below we describe
key steps in collecting these annotations.

We heavily rely on the Wordnet [28] hierarchy both
to define the vocabulary of attributes and to collect them.
Firstly, we define attributes on each level of the hierarchy:
every object has size and material, most of the mam-
mals have legs and eyes, etc. This allows us do ob-
tain a vocabulary that is both broad, intersecting boundaries

of categories, and specific enough, capturing discriminative
properties. Secondly, we also rely on the hierarchical prop-
erties of the attributes to simplify annotation process. In
particular, the annotator is first asked about generic proper-
ties of the category, like whether it is living, and then all
the properties specific to non-living categories are set
to a negative value automatically. This pruning is applied
on every level of the hierarchy, allowing a single annotator
to collect attribute labels for 386 categories in the base split
of [15] in just 3 days.

4. Experiments
4.1. Datasets and Evaluation

We use three datasets for experimental analysis: CUB-
200-2011, SUN397 and ImageNet. For the first two datasets
we employ attribute annotations collected externally. For
ImageNet no prior attribute annotations exist, so we collect
them ourselves. Below we describe each of the datasets
together with their evaluation protocols in more detail.

CUB-200-2011 is a dataset for fine-grained classifica-
tion [40]. It contains 11,788 images of birds labeled with
200 categories corresponding to bird species. The dataset is
evenly split into training and test subsets. In addition, the
authors have collected annotations for 307 attributes, corre-
sponding to the appearance of the birds’ parts, such as shape
of the beak or color of the forehead. These attribute anno-
tations have been collected on the image level via crowd
sourcing. We aggregate them on the category level by la-
beling a category as having a certain attribute if at least half
of the images in the category are labeled with it. We further
filter out rare attributes by only keeping the ones that are la-
beled for at least five categories, resulting in 130 attributes
used in training. For few-shot evaluation, we randomly split
the 200 categories into 100 base and 100 novel categories.



SUN397 is a subset of the SUN dataset for scene recog-
nition, which contains the 397 most well sampled cate-
gories, totaling to 108,754 images [43]. Patterson et al. [32]
have collected discriminative attributes for these scene cat-
egories. In particular, each annotator has been shown four
images representative of four random categories and then
asked to name attributes that distinguish them from the
other two. This resulted in a vocabulary of 106 attributes
that are both discriminative and shared across scene classes.
Examples include both abstract attributes, such as ‘man-
made’, and purely visual ones, such as ‘grass’. Similar to
CUB, we aggregate these image-level labels for categories
by labeling a category as having an attribute if half of the
labeled images in the category have this attribute, and filter
out the infrequent categories resulting in 89 attributes used
for training. For few-shot evaluation, we randomly split the
scene categories into 197 base and 200 novel categories.

ImageNet is an object-centric dataset [9] that contains
1,200,000 images labeled with 1,000 categories. The cat-
egories are sampled from the Wordnet [28] hierarchy and
constitute a diverse vocabulary of concepts ranging from
animals to music instruments. Defining a vocabulary of at-
tributes for such a dataset is non-trivial and has not been
done previously. We described our approach for collecting
the attributes in more detail in Section 3.4. For few-shot
evaluation, we use the split proposed in [15, 41].

4.2. Implementation Details

Following [15, 41], we use a ResNet-10 [16] architecture
in most of the experiments, but also show results on deeper
variants in Section 4.3. We add a linear layer without a
nonlinearity at the end of all the networks to aid in learn-
ing a cosine classifier. The networks are first pre-trained on
the base categories using mini-batch SGD, as in [15, 41, 1].
The learning rate is set to 0.1, momentum to 0.9 and weight
decay to 0.0001. The batch size and learning rate sched-
ule depend on the dataset size. In particular, for ImageNet
and SUN397, we use the setting proposed in [15, 41] with a
batch size of 256 and 90 training epochs. The learning rate
is decreased by a factor of 10 every 30 epochs. For CUB-
200-2011, which is a much smaller dataset, we use a batch
size of 16 and train for 170 epochs. The learning rate is
first decreased by a factor of 10 after 130 epochs, and then
again after 20 more epochs. This schedule is selected on
the validation set. We use both linear and cosine classifiers
proposed in [14, 1] in the experiments. All the models are
trained with a sofmax cross-entropy loss as Lcls in Eq. (5).

We observe that the proposed TRE loss slows down con-
vergence when training from scratch. To mitigate this issue,
we first pre-train a network with the standard classification
loss and then fine-tune it with the TRE regularization for the
same number of epochs using the same optimization param-
eters. For a fair comparison, baseline models are fine-tuned

in the same way. We set the hyper-parameter λ in Eq. (5) for
each dataset individually, using the validation set. For Ima-
geNet and SUN397 λ is set to 8, and for CUB-200-2011 to
10. The attribute annotations are sparse, with around 10%
of them being labeled as positive for any given image on av-
erage. Due to this highly imbalanced distribution of training
labels, all the attribute classifiers learn to predict the nega-
tive labels. To address it, we randomly sample a subset of
the negative attributes for every example in every batch to
balance the number of positive and negative examples.

In few-shot training, we use the baseline proposed in [1]
as our base model. In particular, we learn either a linear
or Cosine classifier on top of the frozen CNN representa-
tion. Differently from [1], we learn the classifier jointly on
novel and base categories. We use mini-batch SGD with a
batch size of 1,000 and a learning rate of 0.1, but find that
training is robust to these hyper-parameters. What is im-
portant is the number of training iterations. This number
depends on the dataset and the classifier. On ImageNet we
train for 100 iterations for both Cosine and linear classifiers.
On SUN397 we train for 200 iterations for linear and 100
for Cosine classifier. On CUB we train for 100 iterations
for linear and 40 for Cosine classifier. To select these val-
ues, we split the base categories in half, using one half as
validation, and train until the top-5 performance on the val-
idation categories stops increasing. We use the same setting
to select the optimal hyper-parameters for other methods.
Overall, we follow the evaluation protocol proposed in [41].

4.3. Analysis of Compositional Representations

In this section, we analyze whether the compositionallity
constraints proposed in Section 3 lead to learning represen-
tations that are able to recognize novel categories from a few
examples. Most of the analysis is performed on the CUB
dataset [40] due to its small size. Following [14, 1], we use
a Cosine classifier in the most of the experiments due to its
superior performance. A qualitative analysis of the learned
representations using the NetworkDissection framework of
Zhou et al. [46] is also provided in the supplementary ma-
terial.

Comparison between hard and soft compositional
constraints: We begin our analysis by comparing the two
proposed variants of compositionallity regularizations: the
regular TRE in Eq. (4) and the Soft TRE in Eq. (6). Fig-
ure 4 shows the top-5 performance of the baseline model
with a Cosine classifier and compares with the two vari-
ants of our compositional model on the novel categories of
CUB. We perform the evaluation in 1-, 2-, and 5-shot sce-
narios. First we notice that the variant of the regulariza-
tion based on the hard sum constraint (shown in orange)
decreases the performance over the baseline. This is not
surprising, since, as we mentioned in Section 3, this con-
straint assumes exhaustive attribute annotations which are
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Figure 4. Comparison of the two variants of our compositionallity
regularizations to a baseline on the novel categories of the CUB
dataset. The y-axis indicates top-5 accuracy in a 100-way evalua-
tion. Our soft TRE regularization achieves the best performance.

not available in these experiments. By contrast, our pro-
posed soft constraint operationalized with attribute classi-
fiers allows the representation to capture important infor-
mation that is not described in the attribute annotation. The
variant with Soft TRE regularization (shown in gray) thus
improves the performance by 6.9% over the baseline in the
most challenging 1-shot scenario. This confirms our hy-
pothesis that enforcing the learned representation to be de-
composable over category-level attributes allows it to gen-
eralize to novel categories with fewer examples. We use
the soft variant of our approach in the remainder of the pa-
per. Finally, the improvement of our compositional model
over the baseline decreases slightly, as it sees more exam-
ples from the novel categories. This is because, as the train-
ing regime gets closer to the standard data-rich scenario,
additional regularization methods become redundant. Nev-
ertheless, our variant with soft regularization still improves
over the baseline by 5.7% in a 5-shot scenario.

Ablation studies: We further analyze the compositional
representation learned with the soft constraint (‘Soft TRE’)
through extensive ablations and report the results in Table 1.

Evaluation in the challenging joint label space of base
and novel classes: We notice that the observation about
the positive effect of the compositionallity constraints on
the generalization performance of the learned representa-
tion made above for the novel categories holds for the
novel + base setting (right part ‘All’ of the table, rows 1
and 2). In particular, our approach improves over the base-
line by 4% in the 1-shot and by 4.7% in the 5-shot setting.

Cosine vs. linear classifiers: The linear classifier (de-
noted as ‘Linear w/ comp’) performs significantly worse
than the Cosine variant, especially in the novel + base
setting. A similar behavior was observed in [14, 1] and
attributed to that the Cosine classifier explicitly reduces
intra-class variation among features during training by unit-
normalizing the vectors before dot product operation.

Novel All
1-shot 2-shot 5-shot 1-shot 2-shot 5-shot

Cos 46.1 57.0 68.9 58.2 63.3 69.8
Cos w/ comp 53.0 63.6 74.6 62.2 68.1 74.5
Linear w/ comp 47.0 58.8 72.8 55.5 63.6 71.8
Cos + data aug 47.7 58.0 69.4 58.7 64.0 70.1
Cos w/ comp + data aug 53.3 64.2 74.3 62.6 68.4 74.4
Linear w/ comp + data aug 49.5 60.5 72.7 57.5 64.6 71.6

Table 1. Analysis of our approach: top-5 accuracy on the novel
and all (i.e., novel + base) categories of the CUB dataset. ‘Cos’:
the baseline with a Cosine classifier, ‘Cos w/ comp’: our composi-
tional representation (‘Soft TRE’) with a Cosine classifier, ‘Linear
w/ comp’: our compositional representation (‘Soft TRE’) with a
linear classifier. The variants trained with data augmentation are
marked with ‘+ data aug’. See ablations for detailed discussions.

Novel All
1-shot 2-shot 5-shot 1-shot 2-shot 5-shot

Cos 35.4 45.6 56.4 52.1 56.7 61.9
Cos w/ comp 41.6 52.5 64.7 54.2 59.9 66.0
Linear w/ comp 40.6 51.9 63.5 48.7 56.2 65.1
Cos + data aug 39.9 49.7 59.7 54.2 58.5 63.5
Cos w/ comp + data aug 44.7 55.5 65.9 56.0 61.3 66.9
Linear w/ comp + data aug 39.8 49.6 59.5 48.3 53.8 60.3

Table 2. Analysis of our approach: top-5 accuracy on the novel
and all (i.e., novel + base) categories of the SUN dataset. ‘Cos’:
the baseline with a Cosine classifier, ‘Cos w/ comp’: our composi-
tional representation (‘Soft TRE’) with a Cosine classifier, ‘Linear
w/ comp’: our compositional representation (‘Soft TRE’) with a
linear classifier. The variants trained with data augmentation are
marked with ‘+ data aug’. See ablations for detailed discussions.

Effect of data augmentation: Another important obser-
vation made in [1] is that, for a fair comparison, stan-
dard data augmentation techniques (e.g., random cropping
and flipping) need to be applied when performing few-shot
learning. We report the results with data augmentation in
the lower part of the table. The most important observa-
tion here is that, although all the approaches benefit from
data augmentation, the improvements for the compositional
model with the Cosine classifier are marginal. This further
confirms our hypothesis that compositional representations
demonstrate better generalization behavior, making some of
the techniques designed to improve the generalization per-
formance of standard deep learning models less important.

Larger-scale evaluation: To validate our previous obser-
vations, we now report results on a much larger SUN397
dataset [43]. Table 2 summarizes the 200- and 397-way
evaluation in novel and novel + base setting, respectively.
Overall, similar conclusions can be drawn here. One notice-
able difference is that data augmentation has a more signifi-
cant effect on the performance of the compositional model,
but it is still less pronounced compared to the baseline.

Do we sacrifice the performance on base for novel
classes? Figure 5 evaluates the accuracy of the baseline Co-
sine classifier (shown in blue) and our compositional repre-
sentations (shown in gray) on the validation set of the base
categories of CUB and SUN. The compositional represen-
tations improve the performance on the base categories as
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Figure 5. Comparison of our compositionallity regularization to a
baseline on the base categories of the CUB dataset. The y-axis
indicates top-5 accuracy on the corresponding validation set. Our
approach improves the performance on the base categories as well.

well, although the improvement is significantly lower than
that on the novel categories (e.g., in the 1-shot scenario:
3.0% compared with 6.9% on CUB , and only 0.7% com-
pared with 6.2% on SUN). Hence, while compositional rep-
resentations are especially important when learning to rec-
ognize novel categories from a few examples, they do pro-
vide improvements even in the standard training regime.

Effect of the network depth: finally, we study the gen-
eralizability of the proposed compositionallity regulariza-
tion to deeper network architectures. We conduct these ex-
periments on the SUN dataset due to its large size and high
quality of the attribute annotations. In Table 3 we compare
the ResNet10 model with cosine classifier to ResNet18 and
ResNet34. First of all, we notice that the improvements
with respect to the baseline due to compositionallity regu-
larization are diminishing as the network depth increases.
Moreover, the shallow ‘ResNet10, Cos w/ comp’ model
outperforms the deeper variants. We analyze this behavior
and observe that the deeper models are able to learn attribute
classifiers without significantly modifying their represen-
tation. This can be explained by the fact that the feature
space of the last layer of the deep networks has a higher
representation power. We thus propose to adapt our reg-
ularization by applying it not only to the last, but also to
the intermediate layers of the network. In practice, we ap-
ply it to the outputs of all the ResNet blocks starting from
the block 9. This new variant, which we denote ‘Cos w/
deep comp”, achieves improvements over the baseline for
ResNet18 and ResNet34 comparable to those of ‘Cos w/
comp’ for ResNet10, which confirms that our proposed ap-
proach is indeed applicable to deeper networks.

4.4. Comparison to the State-of-the-Art

We now compare our compositional representations with
the Cosine classifiers (denoted as ‘Cos w/ comp’) to the
state-of-the-art few-shot methods based on meta-learning.

Novel All
1-shot 2-shot 5-shot 1-shot 2-shot 5-shot

ResNet10, Cos 35.4 45.6 56.4 52.1 56.7 61.9
ResNet10, Cos w/ comp 41.6 52.5 64.7 54.2 59.9 66.0
ResNet18, Cos 37.7 47.5 58.8 53.7 58.0 63.3
ResNet18, Cos w/ comp 39.5 49.6 60.9 54.4 58.9 64.3
ResNet18, Cos w/ deep comp 43.6 54.4 65.9 56.7 62.2 68.1
ResNet34, Cos 38.5 48.8 60.2 54.3 58.8 64.4
ResNet34, Cos w/ comp 38.8 49.1 60.7 54.9 59.4 64.8
ResNet34, Cos w/ deep comp 44.0 55.2 66.8 56.9 62.5 68.4

Table 3. Evaluation of deeper architectures: top-5 accuracy on the
novel and all (i.e., novel + base) categories of the SUN dataset.
‘Cos’: the baseline with a Cosine classifier, ‘Cos w/ comp’: our
compositional representation (‘Soft TRE’) with a Cosine classi-
fier, ‘Cos w/ deep comp’: our compositional representation (‘Soft
TRE’) with regularization applied to intermediate layers of the net-
work. See ablations for detailed discussions.

We use the ResNet10 architecture as a backbone for all
the methods. We evaluate on 3 datasets: CUB-200-1011,
SUN397, and ImageNet. For CUB and SUN which have
publicly available, well annotated attributes, Tables 4 and 5
show that our approach easily outperforms all the baselines
across the board even without data augmentation. In partic-
ular, our full method provides around 5 to 7 point improve-
ment on CUB and 4 to 6 point improvement on SUN for the
novel classes in the most challenging 1-, 2-shot scenarios,
and achieves similar improvements in the joint label space.

Table 6 summarizes the comparison on ImageNet for
which we collected attribute annotations ourselves. Here
we compare to the state-of-the-art methods on this dataset
reported in [41], including the approaches that generate ad-
ditional training examples . These results verify the effec-
tiveness of our proposed approach in Section 3.4 of annotat-
ing attributes on the category level. The collected annota-
tions might be noisy or less discriminative, compared with
the crowd sourced annotation in [40, 32]. However, our
compositional representation with a simple Cosine classi-
fier still achieves the best performance in 1-, 2-, and 5-shot
scenarios, and is only outperformed in the 10-shot scenario
by Prototypical Matching Networks.

5. Conclusion

In this work we have proposed a simple attribute-based
regularization approach that allows to learn compositional
image representations. We validated the use of our approach
in the task of learning from few examples, obtaining the
state-of-the-art results on three dataset, and demonstrating
that compositional representations help learn classifiers in
the small sample size regime. In addition, attribute clas-
sifiers used to train our model can be used to enhance its
interpretability. Compositionality is one of the key proper-
ties of human cognition that is missing in the modern deep
learning methods, and we believe that our work is a precur-
sor to a more in-depth study on this topic.



Novel All
1-shot 2-shot 5-shot 10-shot 1-shot 2-shot 5-shot 10-shot

Prototypical networks [36] 43.2 54.3 67.8 72.9 55.6 59.1 64.1 65.8
Matching Networks [39] 48.5 57.3 69.2 74.5 50.6 55.8 62.6 65.4
Relational networks [44] 39.5 54.1 67.1 72.7 51.9 57.4 63.1 65.3
Cos w/ comp (Ours) 53.0 63.6 74.6 78.6 62.2 68.1 74.5 77.0
Cos w/ comp + data aug (Ours) 53.3 64.2 74.3 78.5 62.6 68.4 74.4 76.7

Table 4. Comparison to the state-of-the-art approaches: top-5 accuracy on the novel and all (i.e., novel + base) categories of the CUB
dataset. Our approach consistently achieves the best performance.

Novel All
1-shot 2-shot 5-shot 10-shot 1-shot 2-shot 5-shot 10-shot

Prototypical networks [36] 37.1 49.2 63.1 70.0 51.3 59.0 66.4 69.3
Matching Networks [39] 41.0 48.9 60.4 67.6 50.3 54.0 60.2 64.4
Relational networks [44] 35.1 49.0 63.7 70.3 51.0 58.6 66.5 69.1
Cos w/ comp (Ours) 41.6 52.5 64.7 70.5 54.2 59.9 66.0 69.1
Cos w/ comp + data aug (Ours) 44.7 55.5 65.9 71.5 56.0 61.3 66.9 70.0

Table 5. Comparison to the state-of-the-art approaches: top-5 accuracy on the novel and all (i.e., novel + base) categories of the SUN
dataset. Our approach consistently achieves the best performance.

Novel All
1-shot 2-shot 5-shot 10-shot 1-shot 2-shot 5-shot 10-shot

Prototypical Matching Network w/ G [41] 45.8 57.8 69.0 74.3 57.6 64.7 71.9 75.2
Prototypical Matching Network [41] 43.3 55.7 68.4 74.0 55.8 63.1 71.1 75.0
Prototypical networks w/ G [41] 45.0 55.9 67.3 73.0 56.9 63.2 70.6 74.5
Prototypical networks [36] 39.3 54.4 66.3 71.2 49.5 61.0 69.7 72.9
Matching Networks [39] 43.6 54.0 66.0 72.5 54.4 61.0 69.0 73.7
Cos w/ comp (Ours) 47.0 58.0 68.4 72.9 55.6 63.8 71.2 74.5
Cos w/ comp + data aug (Ours) 49.0 59.9 69.3 73.4 57.9 65.1 71.7 74.8

Table 6. Comparison to the state-of-the-art approaches: top-5 accuracy on the novel and all (i.e., novel+ base) categories of the ImageNet
dataset. Even with noisy or less discriminative attributes we collected, our approach achieves the best performance in 1-, 2-, and 5-shot
scenarios. In addition, our approach can be potentially combined with the data generation approach [41] for further improvement.
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6. Supplementary Material

This supplementary material provides additional experi-
mental results and details that are not included in the main
paper due to limited space. We explore the effect of plug-
ging our compositional representations into existing few-
shot learning methods, such as Prototypical Networks [36]
and Matching Networks [39] in Section 6.1. We then pro-
vide an analysis of the learned representation using Net-
work Dissection [46] in Section 6.2. Finally, we visualize
the attributes used in our experiments on ImageNet together
with their hierarchical structure in Sections 6.3.

6.1. Incorporation of Compositional Representa-
tions into Existing Few-Shot Learning Meth-
ods

In the main paper, we have demonstrated that a simple
Cosine classifier learned on top of a frozen CNN, which was
trained with our compositionality regularization, leads to
the state-of-the-art results on three datasets, outperforming
more complex existing few-shot classification models, such
as Protoypical Networks [36] and Matching Network [39].
It is natural to ask whether training these models with our
compositional representations would lead to superior re-
sults. To answer this question, we train the CNN backbone
on the base categories with a linear classifier and the com-
positionality regularization. On top of the compositional
feature, we learn these few-shot models as described in the
main paper. We report the results on the novel categories of
the CUB-200-2011 dataset in Table 7.

We observe that using compositional representations in-
deed leads to an improved performance for both Prototypi-
cal Networks and Matching Networks in almost all the set-
tings. The improvements for Prototypical Networks are
marginal. The effect of compositional representations for
Matching Networks is more pronounced, allowing them to
outperform the linear classifier in 1- and-2-shot evaluation
setting. However, our Cosine classifier remains superior to
the few-shot learning methods. These experiments not only
confirm the surprising effectiveness of the Cosine classifier
observed in the main paper, but also show that the proposed
compositional representations can generalize to other sce-
narios and classification models.

6.2. Analysis and Visualization of Representations

We now qualitatively and quantitatively analyze the
learned representations using Network Dissection: a frame-
work for studying the interpretability of CNNs proposed by
Zhou et al. [46]. They first collect a large dataset of im-
ages with pixel-level annotations, where the set of labels
spans a diverse vocabulary of concepts from low-level (i.e.,
textures) to high-level (i.e., object or scene categories) con-
cepts. They then probe each unit in a pretrained CNN by

Novel
1-shot 2-shot 5-shot

PN 43.2 54.3 67.8
PN w/ comp 42.6 54.7 68.1
MN 48.5 57.3 69.2
MN w/ comp 50.4 59.3 70.8
Linear w/ comp 47.0 58.8 72.8
Cos w/ comp 53.0 63.6 74.6

Table 7. Incorporating our compositional representations into ex-
isting few-shot classification models : top-5 accuracy on the novel
categories of the CUB dataset. ‘PN’: Prototypical Networks, ‘PN
w/ comp’: Prototypical Networks with our compositional repre-
sentation, ‘MN’: Matching Networks, ‘MN w/ comp’: Match-
ing Networks with our compositional representation, ‘Linear w/
comp’: our compositional representation with a linear classifier,
‘Cos w/ comp’: our compositional representation with a Cosine
classifier.

treating it as a classifier for each of these concepts. If a
unit achieves a score higher than a threshold for one of the
concepts, it is assumed to capture the concept. The number
of internal units that capture some interpretable concepts is
then used as a measure of the interpretability of the network.

We compute this measure for the last layer of our net-
works (before the classification layer) for both the baseline
Cosine classifier and the Cosine classifier with our compo-
sitionality regularization trained on SUN397. We observe
that the baseline has 169 interpretable units out of 512,
capturing 92 unique concepts. For our proposed composi-
tional model, the number of interpretable units increases to
326 and the number of unique concepts increases to 109.
Clearly, the proposed regularization results in learning a
much more interpretable representation. To further analyze
its properties, we present the distribution of the interpretable
units for the baseline in Figure 6 and that for the proposed
model in Figure 7, grouped by the concept type. We observe
that our improvement in novel concepts mainly comes from
the scene categories. This is expected, since SUN397 is a
scene classification dataset.

Another interesting observation is that most of the new
interpretable units seem to be duplicates of the units that
already existed in the baseline model. This is due to a lim-
itation of the Network Dissection approach. Although the
vocabulary of concepts which this evaluation can identify
is relatively broad, it is still limited. Several different real-
world concepts thus end up being mapped to a single label
in the vocabulary. To illustrate this observation and further
analyze our approach, we visualize the maximally activat-
ing images for several units that are mapped by Network
Dissection to the category house in Figure 8. The figure
also shows attention maps of the units within each image.
The first two units, which are shared by the baseline and the
proposed model, seem to capture the general concepts of
a wooden house and a stone house. However, the



other three units, which are only found in the model trained
with the compositionality regularization, seem to capture
parts of the house, such as roof, window, and porch
(see attention maps). This observation further validates that
the proposed approach leads to learning representations that
capture the compositional structure of the concepts.

6.3. ImageNet Attributes

In Figure 9, we visualize the hierarchical structure of the
attributes which we defined for the 389 base categories in
the subset of ImageNet used in our experiments. Each node
(including non-leaf nodes) represents a binary attribute and
edges capture the parent-child relationships between the at-
tributes. These relationships are used in the annotation pro-
cess to prune irrelevant attributes (such as number of wheels
for a living thing) and thus save the annotator’s time. Note
that our annotated attributes might not be the perfect set
of attributes for ImageNet. Nevertheless, even with these
imperfect attributes, our compositionality regularization ap-
proach allowed us to achieve the state-of-the-art result.



Fi
gu

re
6.

D
is

tr
ib

ut
io

ns
of

in
te

rp
re

ta
bl

e
un

its
in

th
e

la
st

la
ye

r
of

th
e

ba
se

lin
e

m
od

el
tr

ai
ne

d
w

ith
a

C
os

in
e

cl
as

si
fie

r
on

SU
N

39
7

ac
co

rd
in

g
to

N
et

w
or

k
D

is
se

ct
io

n
[4

6]
.T

he
un

its
ar

e
gr

ou
pe

d
by

th
e

ty
pe

of
th

e
co

nc
ep

ts
th

ey
re

pr
es

en
t(

i.e
.,

ob
je

ct
,s

ce
ne

,p
ar

t,
or

te
xt

ur
e)

.O
ve

ra
ll,

th
is

la
ye

rh
as

16
9

in
te

rp
re

ta
bl

e
un

its
,c

ap
tu

ri
ng

92
un

iq
ue

co
nc

ep
ts

.

Fi
gu

re
7.

D
is

tr
ib

ut
io

ns
of

in
te

rp
re

ta
bl

e
un

its
in

th
e

la
st

la
ye

r
of

th
e

m
od

el
tr

ai
ne

d
w

ith
a

C
os

in
e

cl
as

si
fie

r
an

d
ou

r
co

m
po

si
tio

na
lit

y
re

gu
-

la
ri

za
tio

n
on

SU
N

39
7

ac
co

rd
in

g
to

N
et

w
or

k
D

is
se

ct
io

n
[4

6]
.T

he
un

its
ar

e
gr

ou
pe

d
by

th
e

ty
pe

of
th

e
co

nc
ep

ts
th

ey
re

pr
es

en
t(

i.e
.,

ob
je

ct
,

sc
en

e,
pa

rt
,o

rt
ex

tu
re

).
O

ve
ra

ll,
th

is
la

ye
rh

as
32

6
in

te
rp

re
ta

bl
e

un
its

,c
ap

tu
ri

ng
10

9
un

iq
ue

co
nc

ep
ts

.



Fi
gu

re
8.

To
p

ac
tiv

at
in

g
im

ag
es

fo
r

se
ve

ra
l

un
its

in
th

e
la

st
la

ye
r

of
th

e
ne

tw
or

k
th

at
ar

e
m

ap
pe

d
to

th
e

co
nc

ep
t
h
o
u
s
e

by
N

et
w

or
k

D
is

se
ct

io
n,

to
ge

th
er

w
ith

th
e

un
its

’a
tte

nt
io

n
m

ap
s.

T
he

fir
st

tw
o

un
its

ar
e

fo
un

d
bo

th
in

th
e

ba
se

lin
e

m
od

el
an

d
in

th
e

m
od

el
tr

ai
ne

d
w

ith
ou

r
co

m
po

si
tio

na
lit

y
re

gu
la

ri
za

tio
n,

an
d

ca
pt

ur
e

ge
ne

ri
c

co
nc

ep
ts

:
w
o
o
d
e
n
h
o
u
s
e

an
d
s
t
o
n
e
h
o
u
s
e

.
T

he
ne

xt
th

re
e

un
its

ar
e

on
ly

fo
un

d
in

th
e

pr
op

os
ed

m
od

el
an

d
ca

pt
ur

e
pa

rt
s

of
th

e
ho

us
e,

su
ch

as
r
o
o
f

,w
i
n
d
o
w

,a
nd

p
o
r
c
h

(s
ee

at
te

nt
io

n
m

ap
s)

.



Fi
gu

re
9.

A
ttr

ib
ut

es
us

ed
in

ou
r

Im
ag

eN
et

ex
pe

ri
m

en
ts

to
ge

th
er

w
ith

th
ei

r
hi

er
ar

ch
ic

al
st

ru
ct

ur
e.

E
ac

h
no

de
re

pr
es

en
ts

a
bi

na
ry

at
tr

ib
ut

e
an

d
ed

ge
s

ca
pt

ur
e

th
e

pa
re

nt
-c

hi
ld

re
la

tio
ns

hi
ps

be
tw

ee
n

th
e

at
tr

ib
ut

es
.


