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Abstract

Deep convolutional neural networks (CNNs) have recog-
nized promise as universal representations for various im-
age recognition tasks. One of their properties is the ability
to transfer knowledge from a large annotated source dataset
(e.g., ImageNet) to a (typically smaller) target dataset. This
is usually accomplished through supervised fine-tuning on
labeled new target data. In this work, we address “unsu-
pervised fine-tuning” that transfers a pre-trained network
to target tasks with unlabeled data such as image clustering
tasks. To this end, we introduce group-sparse non-negative
matrix factorization (GSNMF), a variant of NMF, to identify
a rich set of high-level latent variables that are informative
on the target task. The resulting “factorized convolutional
network” (FCN) can itself be seen as a feed-forward model
that combines CNN and two-layer structured NMF. We em-
pirically validate our approach and demonstrate state-of-
the-art image clustering performance on challenging scene
(MIT-67) and fine-grained (Birds-200, Flowers-102) bench-
marks. We further show that, when used as unsupervised
initialization, our approach improves image classification
performance as well.

1. Motivation

Advances in computer vision and machine learning, es-
pecially deep convolutional neural networks (CNNs), have
relied on supervised learning and availability of large-scale
annotated data. In practice, however, collecting such mas-
sively annotated training data for new categories or tasks of
interest is typically unrealistic. Fortunately, when trained on
a large enough, diverse “base” set of data (e.g., ImageNet),
CNNs exhibit certain attractive transferability properties for
a broad range of tasks [38, 53]. This suggests that CNNs
could serve as universal representations for novel categories
and tasks.
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Figure 1: Unsupervised transfer of pre-trained CNN repre-
sentations to novel target tasks with unlabeled data via a
factorized convolutional network (FCN). Off-the-shelf fea-
tures that are extracted from CNNs pre-trained on ImageNet
are limited to describing subtle differences among novel
fine-grained categories, as visualized by embedding the fea-
tures in a 2-dim space via t-SNE [44] (left). By leveraging
group-sparse non-negative matrix factorization (GSNMF),
unsupervised fine-tuning is accomplished and features ex-
tracted from the resulting GSNMF-FCN model lead to more
discriminative clusters (right). We thus learn a better rep-
resentation with enhanced transferability for target tasks
with unlabeled data, in which conventional supervised fine-
tuning with back-propagation is inapplicable.

Unsupervised fine-tuning: Fine-tuning is by far the
dominant strategy for transfer learning with neural net-
works [38, 34, 1, 46]. This approach was pioneered in [20]
by transferring knowledge from a generative to a discrim-
inative model, and has since been generalized with great
success [15, 54]. The basic pipeline involves replacing the
last “classifier” layer of a pre-trained network with a new
randomly initialized layer for the target task. The mod-
ified network is then fine-tuned with additional passes of
appropriately tuned gradient descent on the target training
set. Even though its use is widespread, fine-tuning requires
annotated target data, and we use the term “supervised fine-



tuning” to refer to this conventional paradigm. However, in
scenarios where there are no labeled images for novel cate-
gories or tasks (e.g., in image clustering applications), such
supervised fine-tuning is inapplicable and how to best adapt
a pre-trained CNN still remains an open challenge. Hence,
we propose “unsupervised fine-tuning” as a new paradigm
to address this issue.

Factorized convolutional networks: To this end, we
transfer knowledge from a discriminative to a genera-
tive model and explore “factorized convolutional networks”
(FCNs) that fine-tune the pre-trained CNN representations
in an unsupervised manner. Given unlabeled target images,
a factorization of the CNN representations is learned us-
ing low-rank and group-sparsity constraints. Inspired by
the success of non-negative matrix factorization (NMF) [26,
47] in clustering applications, we introduce a novel NMF
based adaptation module with a generative loss that can
be plugged into any standard CNN to facilitate the desired
unsupervised transfer. As a classic multi-variate analysis
technique, the appeal of NMF is the ability to disentan-
gle exploratory factors of variations underlying unlabeled,
non-negative data samples as well as the inherent cluster-
ing property. Intuitively, the CNN activations of interest are
those after the rectified linear units (ReLUs), which consis-
tently show better recognition performance for various tasks
and which are also non-negative. It is thus natural to inves-
tigate NMF techniques on top of CNN activations for image
clustering, as shown in Figure 1.

Group-sparse non-negative matrix factorization:
More precisely, our key insight is to effectively adapt be-
tween the source and target tasks by both utilizing generic
statistics learned from a large corpus of labeled source im-
ages through CNNs and separating out the current underly-
ing factors of variation relevant to the observed, unlabeled
target data via NMF. To better select a group of correlated
CNN activations, we propose a variant of NMF — group-
sparse NMF (GSNMF), which identifies a rich set of in-
formative and discriminative latent variables across tasks.
Given that NMF/GSNMF could also be interpreted as a two-
layer neural network [26], our GSNMF based FCN is then
regarded as a principled feed-forward model. This allows
to fine-tune the resulting augmented architecture (i.e., mod-
ifying the CNN parameters as well) on the target task with
respect to a NMF based objective using stochastic gradient
descent and back-propagation.

Contributions: Our contributions are four-fold. (1) Dif-
ferent from the conventional strategy that transfers knowl-
edge from a generative to a discriminative model [20], we
propose a novel way of CNN transfer — supervised, dis-
criminative pre-training and then unsupervised, generative
fine-tuning. (2) Based on this general principle, we show
how factorized convolutional networks (FCNs), which com-
bine NMF and pre-trained CNN, learn a more generic fea-

ture representation across tasks. (3) We show how to explic-
itly enforce group-sparsity on FCN to better leverage the
correlation of CNN activations by introducing elastic net
regularization into NMF. (4) Our unsupervised fine-tuning
is general; it could be used in image clustering tasks and
also used as unsupervised initialization to further improve
classification tasks. Finally, to the best of our knowledge,
we are the first to evaluate the performance of image cluster-
ing on challenging large-scale scene and fine-grained recog-
nition datasets, producing state-of-the-art results.

2. Related Work
Unsupervised feature learning: Unsupervised feature
learning focuses on discovering low-dimensional fea-
tures that capture some structure underlying the high-
dimensional unlabeled data. Classic approaches include
principal component analysis (PCA) [23], independent
component analysis (ICA) [22], and locally linear embed-
ding (LLE) [39]. Inspired by the hierarchical architec-
ture of the neural system, many new schemes that stack
multiple layers of simple learning blocks, such as sparse
coding [27], restricted Boltzmann machines (RBMs) [19],
auto-encoders [16], and NMF [26], have been proposed to
build deep representations [48, 28]. One similar work is the
deep semi-NMF model, which stacks semi-NMF together
to learn low-dimensional feature representations [43]. An-
other similar work is the deep linear discriminant analysis
model, which projects high-dimensional observations to lin-
early separable representations [10].

Different from the previous work, we combine a NMF
layer with a pre-trained deep CNN and use the reconstruc-
tion error as the objective function to fine-tune the network
for unsupervised learning. We extend work [17] reported
in the previous workshop in three important ways. (1) [17]
is pipelined, while ours is end-to-end. [17] simply applies
NMF on top of off-the-shelf CNN features, in which NMF
reduces the dimension of fixed CNN features. In contrast,
ours is more general and introduces NMF (and its variant) as
a feature reconstruction (generative) loss for unsupervised
CNN fine-tuning. Ours thus integrates NMF and CNN as a
principled feed-forward network, and allows for fine-tuning
the full network with back-propagation. As shown in the
following sections, we not only learn the NMF adaptation
layers, but also modify (a portion of) the pre-trained CNN
weights using the generative loss towards the target task.
Due to the end-to-end nature, ours is more flexible and
achieves better performance. (2) [17] can only deal with
image clustering. In contrast, due to the end-to-end nature,
ours could be also used as unsupervised initialization and
improves image classification on target tasks. (3) We have
substantially extended experimental results, including more
datasets, more baselines, different clustering techniques (k-
means and spectral clustering), additional hyper-parameter



analysis, and ablation analysis.
Domain adaptation and transfer learning: Another re-
lated line of work focuses on standard domain adaptation
with the assumption that the data from source and target
datasets share the same set of categories but have shifted
distributions [13, 14]. Our work, however, does not have
this assumption and addresses a more general, challeng-
ing task (i.e., different but relevant source and target cat-
egories/tasks). The learning processes are different as well.
References [13, 14] explicitly use the source labels to infer
the target labels. In contrast, we transfer a pre-trained (Ima-
geNet) network to unsupervised target tasks and do not use
the source labels in this process. Besides, [13, 14] are eval-
uated on image classification tasks while our work is mainly
evaluated on image clustering tasks. The reconstruction loss
used in [14] is also different: [14] simply reconstructs tar-
get raw images with the mean squared error loss, whereas
we reconstruct the learned CNN features and leverage their
non-negativity. More recently, a recurrent network with a
single loss function is proposed to guide the agglomerative
clustering [52]. While this work uses different network ar-
chitectures for different datasets to train a dataset specific
model, it fails to address the subtle difference among fine-
grained categories. Different from this work, our model
uses the same parameters and network architecture for all
datasets, leading to a more universal feature representation.

In transfer learning, the target task is different from but
related to the source task [35], such as transfer from object-
centric source categories to scene-centric target categories
or from coarse source categories to fine-grained target cate-
gories. The standard fine-tuning strategy [1] and its vari-
ants [29, 46] in supervised transfer are inapplicable here
since they require a significant amount of labeled target
data, which is simply not available. For novel categories,
effective unsupervised transfer of CNN representations re-
mains an open challenge [45].
Image clustering: Different from previous work [12, 42,
7], we use CNN features and evaluate our model on both
standard image clustering datasets and large-scale image
classification datasets. The latter datasets still remain chal-
lenging even for (supervised) image classification tasks. In
related work, an ensemble of image prototype sets is sam-
pled from the available data to represent a rich set of vi-
sual categories, and images are projected onto these proto-
types as new feature representations [6]. Unlike [6], which
takes advantage that the test data is used as unlabeled data
for training (i.e., transductive learning), we follow strict
train/test splits for each dataset to ensure the generalization
of our approach. Direct clustering in a pre-trained, fixed su-
pervised CNN feature space [6] is simple but sub-optimal
due to domain shift. Performing clustering through unsu-
pervised deep feature learning provides an attractive op-
tion [50]. However, the performance of the unsupervised

deep models is still not on par with that of their supervised
counterparts. On the contrary, we leverage both supervised
CNN feature learning and unsupervised transfer learning.

3. Factorized Convolutional Networks
Let us consider a CNN architecture pre-trained on a

source domain with abundant data, for example the vanilla
VGGNet [41] pre-trained on ImageNet (ILSVRC) 1,000
categories [40]. The CNN is composed of a feature rep-
resentation module F (e.g., the 13 convolutional layers C1-
C13 and two fully-connected layers fc6, fc7 for VGGNet)
and a classifier module C (e.g., the last fully-connected layer
fc8 with 1,000 units and the 1,000-way softmax for Ima-
geNet classification) [46].

We now transfer this CNN for representation learning on
unlabeled target images in tasks such as image clustering.
The transfer is accomplished through our unsupervised fine-
tuning and the target CNN is instantiated and initialized in
the following way, as shown in Figure 2: (1) the representa-
tion module FT is copied from FS of the source CNN with
the parameters ΘFT = ΘFS , and (2) the classifier module C
is removed and a new “adaptation module” A is introduced
that consists of a group-sparse non-negative matrix factor-
ization (GSNMF) on top of fc7 activations.

Note that the unsupervised fine-tuning is different from
conventional supervised fine-tuning; in the latter case, a
new classifier module CT (e.g., a new fc8 and softmax) is
introduced with the parameters ΘCT randomly initialized.

As a complex non-linear function of all input pixels, the
fc7 representation may capture mid-level object parts as
well as their high-level configurations [34]. Our GSNMF
module then reduces feature dimension and enlarges spar-
sity among different groups simultaneously, thus identify-
ing a rich set of informative latent variables useful for unsu-
pervised adaptation. The GSNMF module is trained while a
portion of the parameters ΘFT are optionally fine-tuned (de-
pending on the amount of available data) by continuing the
back-propagation.

3.1. NMF/GSNMF Module
We consider an M dimensional random vector x with

non-negative elements, e.g., the CNN fc7 activations in our
case. Its N observations are denoted as xi, i = 1, 2, . . . , N .
N is the batch size in our stochastic optimization. Let the
data matrix be X = [x1,x2, . . . ,xN ] ∈ RM×N

≥0 . NMF
seeks a non-negative basis matrix W ∈ RM×L

≥0 and a coef-
ficient matrix H ∈ RL×N

≥0 such that

X ≈WH. (1)

Usually L� min(M,N).
While classic NMF is able to identify informative la-

tent variables, it is commonly known that large deep neural
networks typically are comprised of many redundant and
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Figure 2: Illustration of unsupervised fine-tuning and fac-
torized convolutional networks. A network (e.g., VGGNet)
is trained on the source task (e.g., ImageNet classification)
with a large amount of labeled images. The pre-trained pa-
rameters of its feature representation module (C1-C13 and
fc6, fc7) are then transferred to the target task with unla-
beled data (e.g., image clustering). In such unsupervised
scenario, we introduce a new “adaptation module” that con-
sists of a group-sparse non-negative matrix factorization
(GSNMF) on top of fc7 activations to compensate for the
different image dataset statistics (e.g., type of objects, typi-
cal viewpoints) between the source and target data. We then
train the GSNMF module while fine-tuning the representa-
tion module based on the GSNMF reconstruction (genera-
tive) loss using the unlabeled target image data.

highly correlated units [21]. Hence, to better select a group
of correlated CNN activations, we enforce additional group-
sparsity constraints on NMF. The joint `1 and `2 norm
penalty, i.e., elastic net regularization, has been widely used
as a group-sparse regularization technique [55]. The `1 part
generates a sparse model while the `2 part encourages a
smoothing, grouping effect [30]. Such group-sparsity prop-
erty is beneficial when transferring a pre-trained CNN to
a novel task, since it allows to select the correlated fea-
tures suitable to the target data while discarding those un-
correlated ones. We thus impose a weighted mixture of
`1 and squared `2 penalties on the coefficient matrix H to
achieve the desired group-sparse representations. The re-
sulting GSNMF objective function is defined as

f(W,H) =
1

2
‖ X−WH ‖2F +

λ1

2
‖ H ‖22 +λ2 ‖ H ‖1,

s.t.W,H ≥ 0.
(2)

Here λ1 and λ2 are the hyper-parameters that control the
importance of the `1 and `2 regularization terms.

3.2. Optimization

We use the alternating minimization procedure and mul-
tiplicative update rule to optimize Eqn. (2) following [26].
Since we impose group-sparsity on the coefficient matrix
H, the update rule of W remains the same as that in the
standard NMF formulation [26]. We use gradient descent
to optimize H, and the first-order update rule of H should

be generally in the form of

H← H− η ∗ ∂f(H)

∂H
, (3)

where ∗ denotes the element-wise multiplication and the
matrix η is the step size. We take the derivative of f(H)
in Eqn. (2) with respect to H, leading to

∂f

∂H
= −WTX+WTWH+ λ1H+ λ2I, (4)

where I is an all-ones matrix of the same size as H. Since
the `1 norm is not differentiable at 0, Eqn. (4) is the subgra-
dient at 0. Following a similar deriving procedure as in [26],
we let the adaptive step size η to be

η =
H

WTWH+ λ1H+ λ2I
, (5)

where the division is element-wise division, and we then
have the following update rule{

W←W ∗ XHT

WHHT ,

H← H ∗ WTX
WTWH+λ1H+λ2I

.
(6)

Here the coefficient H is the new feature representation.
Eqn. (6) is a straightforward modification to the multiplica-
tive update rule in the standard NMF optimization [26]. Fol-
lowing a similar proof to that of [26] which uses an auxiliary
function analogous to that used for proving convergence of
the Expectation Maximization algorithm [8], we can show
that the process converges. Since the update rules are mul-
tiplicative, when W and H are initialized as non-negative,
they will remain non-negative during the optimization.

3.3. Unsupervised Fine-Tuning of the Network

As shown in Figure 2, we use the feature reconstruc-
tion (generative) loss in Eqn. (2) for our unsupervised fine-
tuning, in contrast to the cross-entropy loss in conventional
supervised fine-tuning. In the off-the-shelf (OTS) scenario,
we only train the GSNMF module while freezing the pre-
trained representation module. In the fine-tuning (FT) sce-
nario, we train the GSNMF module while fine-tuning the
representation module. Following the standard NMF prac-
tice, in our implementation, we introduce additional `2 nor-
malization layers to X and the basis matrix W before the
factorization layer. Regularizing the feature vector norm
has been a staple of unsupervised learning approaches to
prevent degenerate solutions and collapsed networks [37].

During each iteration, after forward propagation, we ob-
tain the fc7 activations (i.e., X) on the mini-batch. The
mini-batch size is N = 256. We learn W and H using
the update rule in Eqn. (6) . We then fix W and H, and
the loss in Eqn. (2) reduces to the standard Euclidean loss
‖ X−WH ‖2F . We back-propagate the Euclidean error to
update the parameters in the CNN representation module.



This alternating fine-tuning strategy using generative con-
nections could also be seen broadly relevant to the wake-
sleep algorithm [18]. In our evaluation with limited target
data, we froze the remaining layers underneath fc7 and did
not fine-tune them due to over-fitting concerns. With more
training data available, additional layers could be further
fine-tuned.

Algorithm complexity: The time complexity of our ap-
proach is polynomial time O(NLT ), where N is the num-
ber of samples, L is the feature dimension, and T is the
iteration number. In our experiments, a forward-backward
pass took less than 0.5 second on a single Titan GPU.

4. Experimental Evaluation

In this section, we evaluate the representation transfer-
ability of our factorized convolutional networks (FCNs)
on both standard image clustering datasets and multiple
much more challenging benchmarks for image clustering,
in which no labeled data is provided. We first introduce the
datasets and the implementation details, and then present
quantitative results by comparing with several state-of-the-
art methods and validating across tasks the generality of
FCN. In absolute terms, we achieve the best performance on
all these benchmarks. We also show that FCN can be used
as unsupervised initialization to further improve the perfor-
mance of classification tasks. Our approach is general as
it can be applied to different CNN architectures. Here we
focus on VGGNet [41] and evaluate variants of our model:

NMF-FCN: All layers of VGGNet are frozen, and we
feed the fc7 activations to an NMF module. The coefficient
matrix H is used as the new feature representation.

GSNMF-FCN-OTS: All layers of VGGNet are frozen,
and we feed the fc7 activations to a GSNMF module, in
which the group-sparsity constraints are imposed on the
standard NMF layer.

GSNMF-FCN-FT: All layers except the fc7 layer are
frozen, and we combine VGGNet with a GSNMF module
and fine-tune fc7 as well. The coefficient matrix H is used
as the new feature representation.

4.1. Datasets

Our model is evaluated on diverse datasets including
standard image clustering datasets and large-scale image
classification datasets (used for the image clustering tasks):

MNIST [25]: MNIST consists of 28×28 gray scale im-
ages of handwritten digits ranging from 0 to 9. The dataset
contains 50,000 training samples, 10,000 validation sam-
ples, and 10,000 test samples.

COIL-20 [31]: COIL-20 consists of 1440 32×32 gray
scale images of 20 objects. The images of each object were
taken 5 degree apart.

As there is no standard large-scale image clustering

dataset, we evaluate our model on large-scale image classi-
fication datasets whose labels are not used during training:

MIT-67 [36]: MIT-67 consists of 15K images spanning
67 indoor scene classes, which makes it a challenging test
case for feature representations. The provided train/test
split for this dataset includes 80 training and 20 test images
per class.

Caltech-UCSD Birds (CUB) 200-2011 [49]: Birds-200
contains 11,788 images of 200 birds species. 5,994 images
are used for training and 5,794 for testing.

Oxford 102 Flowers [33]: Flowers-102 contains 102
flower categories, and each class consists of between 40 and
258 images. 10 images are used as training data and the rest
are used as test data.

These are very challenging tasks because of the follow-
ing reasons. (1) There are strong domain shifts between the
source and target datasets. Compared to the object-centric
ILSVRC dataset where the CNN features are pre-trained,
the target MIT-67 dataset is more scene-centric and consists
of similar objects presented in different indoor scenes [36],
and the target Birds-200 and Flowers-102 datasets involve
very subtle differences between examples of a visual cat-
egory [1]. Importantly, the transferability of a CNN de-
creases when the target task is far from the CNN source
task [1]. (2) The datasets used for evaluation are standard
classification benchmarks, and they are still very challeng-
ing even for supervised image classification. However, we
tackle a more difficult scenario here by testing the repre-
sentations for unsupervised image clustering, without hav-
ing access to the label information on these datasets. We
will show that with limited amount of unlabeled training
data from distinct target tasks, our FCN model is capable of
discovering informative and discriminative latent variables
from CNN representations.

4.2. Baseline Models

In order to evaluate the performance of our FCN model,
we compared it against not only the state-of-the-art algo-
rithm, but also other linear and nonlinear dimension reduc-
tion algorithms that could be useful in learning effective fea-
ture representations. These baselines include:

CNN: All layers of VGGNet are frozen, and the fc7 ac-
tivations are used as the feature representation with dimen-
sion 4,096.

PCA-CNN: We perform PCA over the CNN representa-
tion and use the coefficient as the new feature representa-
tion. The number of principal components is set as 1,024.

LLE-CNN [9]: Locally linear embedding uses an
eigenvector based optimization technique to find the low-
dimensional embedding of points, such that each point is
still described with the same linear combination of its neigh-
bors. The number of nearest neighbors is set as 12 and the
feature dimension is set as 1,024.



Autoencoder-CNN (AE-CNN): After careful prelimi-
nary experiments, we choose linear activations as the transi-
tion functions of the encoder and decoder. The autoencoder
is trained in 200 epochs with a batch size of 128. To avoid
over-fitting, we use 10% of training data as validation data.

Non-Negative AutoEncoder-CNN (NNAE-CNN): Due
to limited training data, we use linear activations as the tran-
sition functions as above. During each iteration, we force
the weights of the encoder and decoder to be non-negative.

EP-CNN [5, 6]: Ensemble projection samples from the
available training data as an ensemble of image prototype
sets and learns discriminative functions over these prototype
sets. We follow the same parameter setting in [5, 6], and the
feature dimension is 3,000.

4.3. Implementation Details

Our FCN model includes two modules and is imple-
mented in Keras [4]. For the CNN layers, we use the VG-
GNet pre-trained on ILSVRC where all the layers except
fc7 are frozen to those learned on ILSVRC without fine-
tuning [41]. In our preliminary experiment, we fine-tuned
fc6 as well. Compared with only fine-tuning fc7, the per-
formance dropped due to limited target data in our case.
This is consistent with the observation in standard super-
vised fine-tuning. With more training data, fine-tuning more
layers should further improve the performance. For each
image, we resize the image to 224 × 224, and extract a
4,096-dim feature vector from the entire image.

For the GSNMF module, to speed up the convergence
rate of NMF, we use the non-negative double singular value
decomposition (NNDSVD) [2]. NNDSVD is a method
based on two SVD processes: one approximates the initial
data matrix, and the other approximates the positive com-
ponents of the resulting partial SVD factors. We use the
unlabeled training data on the target task to learn the bases
and coefficients. L is set as 1,024. The test images are then
fed forward to the learned FCN model, producing a final
1,024-dim feature representation.

Note that our main purpose is to validate whether the
proposed approach is able to boost the transferability of
CNN features for image clustering and is not to propose
a better clustering approach. Hence, we use two standard
clustering methods, which are spectral clustering (SC) [32]
and k-means. Choosing the k number of clusters is typically
difficult for clustering algorithms without any prior knowl-
edge of the data. We then chose k as the number of classes
for each target dataset. In our preliminary experiments, we
found that ours consistently outperformed baselines with
different values of k, due to our improved feature represen-
tations. For a fair comparison, we perform `2 normalization
on the feature representations for both our models and base-
lines. To reduce the influence of randomness introduced by
different initializations of k-means, the k-means grouping

stages in SC and k-means are repeated 10 times. The result
with the minimum distortion is selected. Euclidean distance
is used for both methods.

4.4. Methodology

Hyper-parameter settings: For the regularization parame-
ters λ1 and λ2 in GSNMF, in a preliminary experiment, we
tested image clustering on the Scene-15 dataset [11], which
is a relatively small dataset. After searching λ1 and λ2 on
a 2D grid 10[−4:1:1] × 10[−4:1:1], we observed that the best
performance was achieved when λ1 = 0.02 and λ2 = 0.05.
In all our experiments, we then simply set λ1 as 0.02 and
λ2 as 0.05.

Choosing the optimal representation dimension L re-
mains challenging in dimensionality reduction. Similarly,
in our preliminary experiment, we tested image cluster-
ing on Scene-15 and MIT-67, and found L = 1,024 usu-
ally achieved the best performance. In all our experiments,
we then simply set L = 1,024. Even better performance
could be obtained by further tuning these hyper-parameters.
We also conduct hyper-parameter sensitivity analysis to test
how λ1, λ2 and L affect the clustering accuracy.
Evaluation metrics: Consistent with the previous
work, accuracy [51] and normalized mutual information
(NMI) [3] are used as the evaluation criterion. We assume
that the clustering algorithm is tested on N samples. For a
sample xi, the cluster label is denoted as ri, and its ground
truth label is ti. Accuracy is defined as

accuracy =

∑N
i=1 δ(ti,map(ri))

N
, (7)

where δ(x, y) equals to 1 if x is equal to y, and 0 otherwise.
The function map(x) is the best permutation mapping func-
tion, which maps a cluster to its corresponding predicted
label. Hence, a higher accuracy indicates that more samples
are predicted correctly.

Now let C denote the cluster centers of the ground truth,
andC

′
denote the cluster centers predicted by the clustering

algorithm. NMI is then defined as

NMI(C,C
′
) =

MI(C,C
′
)

max(H(C), H(C′)
, (8)

where H(C) and H(C
′
) are the entropies of C and C

′
, re-

spectively. MI(C,C
′
) is the mutual information of C and

C
′
. NMI measures the dependency of two distributions. A

higher NMI means that two distributions are more similar.

5. Results and Discussion
In our FCN model, we aim to learn better high-level

representations by introducing the GSNMF module on
top of the original CNN representation. Furthermore, by
fine-tuning the CNN representation module (the last fully-
connected layer in our case), the additional degree of free-
dom allows the FCN model to represent the target data more



Method
k-means spectral clustering

MNIST COIL-20 MNIST COIL-20
Acc NMI Acc NMI Acc NMI Acc NMI

Baselines

CNN 46.7 38.4 74.0 89.2 51.1 41.3 84.3 92.0
PCA-CNN 55.0 47.2 76.9 89.9 48.4 39.6 84.4 91.9

LLE-CNN [9] 29.0 23.0 34.2 34.5 28.9 17.4 22.6 24.7
AE-CNN 45.9 37.3 81.7 90.4 54.9 44.6 81.7 92.1

NNAE-CNN 46.0 37.4 77.1 90.0 49.2 40.6 85.7 92.3
EP-CNN [5, 6] 60.0 58.0 80.5 92.2 53.2 47.6 86.7 93.8

Ours
NMF-FCN 61.7 57.8 82.3 93.0 56.4 47.6 88.6 93.9

GSNMF-FCN-OTS 62.2 58.0 84.3 94.4 57.6 47.9 89.2 94.0
GSNMF-FCN-FT 63.3 58.6 79.6 89.4 58.4 48.0 86.5 92.7

Table 1: Accuracy (%) and normalized mutual information (NMI) (%) of image clustering on two standard benchmark
datasets. k-means and spectral clustering are used on top of the feature representations of our FCN model and baseline
models. The best results are in bold.

effectively. To validate this, we evaluate our model on stan-
dard image clustering datasets and large-scale benchmarks.
Evaluation on standard image clustering datasets: Ta-
ble 1 summarizes the comparison between our model and
the baseline models. Our FCN model outperforms the origi-
nal CNN representation by a large margin on these standard
image clustering datasets. For example, in terms of accu-
racy, our FCN model outperforms the original CNN repre-
sentation by 16.6% on MNIST and 10.3% on COIL-20.
Evaluation on large-scale benchmark datasets: Table 2
summarizes the k-means and spectral clustering (SC) per-
formance of our FCN representation and related baseline
features on the scene and fine-grained recognition datasets.
We can see that our FCN representation outperforms the
original CNN feature and other representations by a con-
siderable margin using the same clustering method. For in-
stance, in terms of clustering accuracy, FCN outperforms
CNN by 3.2% on MIT-67, 2.6% on Birds-200 (where
chance is 0.5%), and 5.3% on Flowers-102 (where chance
is 1%) when k-means is used.

Given that there are only 10 images available for each
class on Flowers-102 to fine-tune our network, GSNMF-
FCN-FT performs slightly worse than GSNMF-FCN-OTS,
while GSNMF-FCN-OTS significantly outperforms CNN.
Consistent with the standard supervised fine-tuning, for tar-
get tasks with medium sized data, GSNMF-FCN-FT con-
sistently outperforms GSNMF-FCN-OTS (e.g., by 1% on
Birds-200 with 200 classes and 5,994 images). With more
data, GSNMF-FCN-FT will further improve the perfor-
mance.

Moreover, EP-CNN reported improved performance
over CNN in transductive learning, where the EP repre-
sentation (ensemble of classifiers) was learned using both
the training and test datasets [5]; however, in our case of
learning representation on the training dataset and conduct-
ing clustering on the test dataset, EP-CNN shows inferior
performance to CNN. This means that having access to the

distribution of the test data is advantageous for EP-CNN.
The superior performance of our GSNMF-FCN reveals

that it learns a more generic and transferable representation
to capture the subtlety of differences across different cate-
gories and tasks. In particular, these results show that our
approach, pre-trained on ILSVRC, is effective on a broad
range of target domains, ranging from low source-target dis-
tance (e.g., MIT-67), to medium distance (e.g., Birds-200,
Flowers-102), and to large distance (e.g., MNIST) [1].
Hyper-parameter sensitivity analysis: We now examine
the influence of the hyper-parameters of our model on its
clustering performance. They are the regularization coeffi-
cients λ1, λ2 and the feature dimension L. We first evaluate
L on MIT-67, and Table 3 shows that FCN consistently out-
performs PCA-CNN and AE-CNN in different settings of
L. We then evaluate λ1, λ2 on Flowers-102. Each time
we change the value of one hyper-parameter with the others
fixed to the values described in the experimental settings.

Figure 3 summarizes the hyper-parameter sensitivity
analysis. The performance of our model increases with λ2
at first and then stabilizes quickly given a certain λ1. It
validates that our model benefits from imposing the regu-
larization terms. After λ2 increases above some threshold
(e.g., 0.05), the accuracy and NMI become stable; as λ2 in-
creases further, the performance drops accordingly, imply-
ing that a larger `2 regularization coefficient will hurt the
performance. Similar trend is observed for the `1 regular-
ization (e.g., for a fixed λ2 = 0.05, our model achieves best
when λ1 lies in the range from 0.02 to 0.05).
Evaluation of group-sparsity formulations: Our
GSNMF-FCN uses the joint `1 and `2 norm penalty to
impose group-sparsity. The mixed `2,1 norm penalty is
an alternative [24]. In our preliminary experiment, we
compared the two formulations, and found that introducing
group sparsity helped and the joint `1 and `2 norm worked
better, as shown in Table 4.
Unsupervised fine-tuning as initialization for image clas-



Method
k-means spectral clustering

MIT-67 Birds-200 Flowers-102 MIT-67 Birds-200 Flowers-102
Acc NMI Acc NMI Acc NMI Acc NMI Acc NMI Acc NMI

Baselines

CNN 45.0 63.2 32.5 61.6 45.7 63.7 37.3 57.6 26.5 57.0 44.7 63.6
PCA-CNN 45.9 63.8 32.1 62.0 46.3 63.9 37.3 57.5 29.1 58.7 46.0 63.0

LLE-CNN [9] 17.4 32.8 21.3 49.4 26.6 45.9 20.7 42.3 17.3 33.4 18.0 35.3
AE-CNN 46.8 64.3 32.6 62.2 46.8 64.5 35.4 57.1 28.0 58.0 43.8 62.1

NNAE-CNN 43.0 63.0 32.4 61.8 45.6 64.5 35.3 58.8 29.0 58.7 46.6 63.5
EP-CNN [5, 6] 47.2 64.6 31.0 61.1 43.9 60.0 43.7 61.9 29.0 59.6 43.0 61.3

Ours
NMF-FCN 46.8 64.0 34.1 62.2 50.2 65.7 42.8 61.4 28.7 58.9 45.3 64.7

GSNMF-FCN-OTS 47.7 64.5 34.4 62.1 51.0 65.9 43.2 62.3 31.0 59.8 45.7 63.9
GSNMF-FCN-FT 48.2 64.9 35.1 62.5 50.1 64.9 44.2 62.5 32.2 60.0 44.7 62.0

Table 2: Accuracy (%) and normalized mutual information (NMI) (%) of scene and fine-grained image clustering on three
large-scale benchmark datasets. k-means and spectral clustering are used on top of the feature representations of our FCN
model and baseline models. The best results are in bold.

Method
Dimension L PCA-CNN AE-CNN GSNMF-FCN (Ours)

256 40.3 42.7 43.2
512 42.8 43.9 45.1
1024 45.9 46.8 48.2
2048 43.6 45.2 46.0

Table 3: Hyper-parameter sensitivity analysis on MIT-67:
Accuracy (%) comparison between our FCN and PCA-
CNN, AE-CNN as functions of the feature dimension L.
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Figure 3: Hyper-parameter sensitivity analysis on Flowers-
102: Accuracy (%) and NMI (%) of our FCN as functions
of its regularization coefficients λ1 and λ2.

sification: Our FCN can be used to improve the classi-
fication performance as well. We evaluate this point by
first learning GSNMF embedding on the target training data

Method MNITS Birds-200
mixed `2,1

joint `1 and `2 (Ours)
56.5 29.1
57.6 31.0

Table 4: Performance comparison of clustering accuracy
(%) between different group-sparsity formulations. The
joint `1 and `2 norm penalty outperforms the mixed `2,1
norm.

Method MIT-67 Birds-200 Flowers-102
CNN

GSNMF-FCN (Ours)
70.78 68.51 82.44
72.75 70.89 84.70

Table 5: Performance comparison of classification accuracy
(%) between GSNMF-FCN and CNN. Learning SVM clas-
sifiers on top of the unsupervised GSNMF-FCN embedding
outperforms training SVMs in the original CNN space.

without using the labels and then training SVM classifiers
on top of the learned embedding using the training labels.
Table 5 shows that our approach outperforms SVM directly
trained with the original CNN feature representation.

6. Conclusion
In this paper, we showed how to improve the transfer-

ability of a deep CNN representation for other visual recog-
nition tasks with unlabeled training data, where conven-
tional fine-tuning with back-propagation is inapplicable. By
introducing group-sparse non-negative matrix factorization
(GSNMF) on top of CNN activations to constitute a unified
feed-forward factorized convolutional network (FCN), we
discovered a rich set of informative and discriminative la-
tent variables. Extensive large-scale image clustering (and
classification) experiments demonstrate that the new feature
representations are significantly suitable for scene and fine-
grained recognition tasks.
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