
Pattern Recognition 46 (2013) 1879–1890
Contents lists available at SciVerse ScienceDirect
Pattern Recognition
0031-32

http://d

n Corr

E-m

albertw

stanshe
journal homepage: www.elsevier.com/locate/pr
Learning dictionary on manifolds for image classification
Bao-Di Liu a,n, Yu-Xiong Wang a, Yu-Jin Zhang a, Bin Shen b

a Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
b Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA
a r t i c l e i n f o

Available online 23 November 2012

Keywords:

Sparse coding

Image classification

Locally linear embedding

Coordinate descent

Manifold
03/$ - see front matter & 2012 Elsevier Ltd. A

x.doi.org/10.1016/j.patcog.2012.11.018

esponding author. Tel.: þ86 10 62798336; fa

ail addresses: lbd08@mails.tsinghua.edu.cn (B

yx@gmail.com (Y.-X. Wang), zhang-yj@mail.t

nbin@gmail.com (B. Shen).
a b s t r a c t

At present, dictionary based models have been widely used in image classification. The image features

are approximated as a linear combination of bases selected from the dictionary in a sparse space,

resulting in compact patterns. The features applied to image classification usually reside on low

dimensional manifolds embedded in a high dimensional ambient space; traditional sparse coding

algorithm, however, does not consider this topological structure. It can be characterized naturally by

linear coefficients that reconstruct each data point from its neighbors. One of the central issues here is

how to determine the neighbors and learn the coefficients. In this paper, the geometrical structures are

encoded in two situations. In simple cases when data points distribute on a single manifold, it is

explicitly modeled by locally linear embedding algorithm combined with k-nearest neighbors. Never-

theless, in real-world scenarios, complex data points often lie on multiple manifolds. Sparse

representation algorithm combined with k-nearest neighbors is instead utilized to construct the

topological structures, because it is capable of approximating the data point by selecting its

homogenous neighbors adaptively to guarantee the smoothness of each manifold. After obtaining the

local fitting relationship, these two topological structures are then embedded into sparse coding

algorithm as regularization terms to formulate the corresponding objective functions of dictionary

learning on single manifold (DLSM) and dictionary learning on multiple manifolds (DLMM), respec-

tively. Upon this, a coordinate descent scheme is proposed to solve the unified optimization problems.

Experimental results on several benchmark data sets, such as Caltech-256, Caltech-101, Scene 15, and

UIUC-Sports, show that our proposed algorithms equal or outperform other state-of-the-art image

classification algorithms.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Recently, image classification, which aims at associating
images with semantic labels automatically, has become quite a
significant topic in computer vision. The most common frame-
work is the discriminative model [1,2,3,4]. Typically, learning
vocabulary by applying k-means clustering on image patches
(also called bag-of-word model) [5] and combining with hard-
assignment vector quantization (VQ) is the most popular method
at the early stage. Hard-assignment VQ method treats an image as
a collection of ‘‘Visual words’’ (vocabulary), and each image patch
is mapped to one word in the vocabulary. After that, several
variants of vocabulary combined with vector quantization have
been proposed in improving the classification performance
recently. Jurie and Triggs [6] considered the densest point rather
than the center of uniform region as the clustering center to learn
vocabulary. Lazebnik et al. [1] extended the hard-assignment VQ
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method with spatial pyramid matching (SPM) kernel to compen-
sate the loss of spatial information. Wu and Rehg [3] proposed
histogram intersection kernel to form the vocabulary and applied
one-class SVM to retrain the vocabulary and achieved satisfying
results. In the year 2009, Yang et al. [2] used sparse coding
algorithm for learning dictionary and coding images, resulting in
state-of-the-art performance in image classification. Compared
with hard-assignment VQ method, sparse coding algorithm can
achieve sparse approximations with lower reconstruction.

On the other hand, some recent research work suggested that
image space is actually a smooth low dimensional sub-manifold
embedded in a high dimensional ambient space. Many manifold
learning algorithms, such as locally linear embedding(LLE) [7],
ISOMAP [8], and Laplacian Eigenmaps [9] were proposed to expli-
citly explore the intrinsic topological structure, which could sig-
nificantly enhance the dimensionality reduction performance. All
these algorithms consider the locality property and preserve it when
learning the patterns. As suggested in [10], locality was more
essential than sparsity, since locality can lead to sparsity while
sparsity cannot cause locality. Therefore, more and more researchers
focused on locality-preserving during dictionary learning for image
classification. van Gemert et al. [11] proposed kernel codebook and
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Table 1
Some abbreviations.

Abbreviations Full name

DLMM Dictionary learning on multiple manifolds

DLSM Dictionary learning on single manifold

HIK Histogram intersection kernel

HIKVQ VQ method combining with HIK

KC Kernel codebook

KScSPM Kernel ScSPM

KSPM Nonlinear kernel SPM

LLC Locality-constrained linear coding

LLE Locally linear embedding

LScSPM Laplacian ScSPM

OCSVM One-class SVM for generating codebook

SC Sparse coding

ScSPM Sparse coding based linear SPM

SPM Spatial pyramid matching

VQ Vector quantization
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soft-assignment vector quantization to preserve the local properties.
Wang et al. [12] considered that each word in the vocabulary was on
a manifold, and utilized locally linear coding [7] for vector quantiza-
tion to preserve the local information on vocabulary. Yan et al. [13]
proposed a general framework for dimensionality reduction called
graph embedding and claimed that most of graph embedding
methods could be unified within this framework. Gao et al. [14]
proposed to incorporate the histogram intersection kernel based
Laplacian matrix into the objective function of sparse coding to
enforce the consistence in sparse representation of similar local
features. Yang et al. [15] proposed intrinsic graph and penalty graph
to preserve the intrinsic graph and laid off the penalty graph in a
supervised way. Zheng et al. [16] proposed to incorporate the vector
quantization based Laplacian matrix into the objective function of
sparse coding. Lu and Peng [17] proposed to incorporate the
hypergraph (vertex, hyperedge, incidence matrix and hyperedge
weights) regularization term into the objective function of sparse
coding. Ramamurthy et al. [18] assumed that data points distributed
on the same manifold and proposed a manifold projection to
improve traditional sparse coding. Shen and Si [19] proposed to
construct multiple manifolds structures by sparse representation
algorithm, however, locality was not explicitly considered. Liu et al.
[20] proposed a discriminant sparse coding scheme to incorporate
the label information into sparse coding algorithm.

Inspired by both the superior performance of sparse coding
based dictionary learning for image classification and the
enhancement of dimension reduction on manifold, dictionary
learning on single manifold (DLSM) and multiple manifolds
(DLMM) are integrated and proposed in this paper. For DLSM,
the intrinsic topological structure of the original data is explicitly
modeled under the assumption that the original data could be fit
by the linear combination of its all k-nearest neighbors which is
then embedded into the objective function of sparse coding
algorithm as the regularization term, while for DLMM, the
original data could be fit by the linear combination of its
neighbors, which only lie on the same manifold with the original
data, selected from k-nearest neighbors. After that, a coordinate
descent scheme [21] with guaranteed convergence is proposed to
solve the unified optimization problems. The proposed dictionary
learning methods on manifolds for image classification are
evaluated on four benchmark data sets and achieve higher
classification accuracy than traditional sparse coding algorithm.

The major contributions of this paper are as follows. First, two
types of topological structures are proposed and analyzed on why
and how these two graph models construct the manifold struc-
tures. Second, a coordinate descent scheme is proposed to solve
the DLSM and DLMM as unified optimization problems. Third, the
proposed algorithms are evaluated in image classification task; as
shown experimentally in Section 6, the performances of our
algorithms equal or outperform other state-of-the-art image
classification algorithms on several benchmark data sets.

The rest of the paper is organized as follows. Section 2 overviews
some related work contributing to image classification. Dictionary
learning methods on manifolds are proposed in Section 3. The
solution to the minimization of the objective function and guaran-
teed convergence are elaborated in Section 4. And implementation
for image coding and spatial pooling is given in Section 5. Then,
experimental results and analysis are shown in Section 6. Finally,
discussions and conclusions are drawn in Section 7.
2. Related work

In this section, some abbreviations and notations are given
first. Then several popular dictionary learning and image coding
methods are listed.
2.1. Some abbreviations and notations

For convenience, some abbreviations are as shown in Table 1.
Let XARD�N represent the local descriptors extracted from

training images for learning dictionary, where D is the dimension
of X, and N is the number of samples in X. Let BARD�K be the
dictionary, and SARK�N be the corresponding codes, where K is
the size of the dictionary. Let Y ARD�M be the features extracted
from an image J, and V ARK�M represent the corresponding codes.
Let ZARðK�LÞ�1 be a vector after spatial pooling to represent the
image, where L is the total number of regions in each layer split
by SPM (L¼1þ4þ16¼21). Let J � J2

F represent the Frobenius
norm. Let A�n and Am� denote the nth column and mth row
vectors of matrix A, respectively. Let trfAg represent the trace of
matrix A. Let knn represent the number of neighbors for each
descriptor.
2.2. Several popular dictionary learning and image coding methods

The aim of dictionary learning [22] is to find the optimum
dictionary to make X � BS. After obtaining the dictionary, for each
image J, we assume that fc and fp denote coding and pooling
operators. The image coding and pooling step can be formulated as

V ¼ f cðYÞ, Z ¼ f pðVÞ ð1Þ

Usually, image coding is related to dictionary learning, and pooling
strategy is max [2] or average. LIBSVM [23] is adopted for classifier
training. Therein, dictionary learning and image coding are the
most focused steps. Several popular dictionary learning and image
coding methods are as follows.

Hard-assignment vector quantization for image classification:
Hard-assignment vector quantization method is the most popular
method, which solves the following optimization problem:

min
B,S

f ðB,SÞ ¼ JX�BSJ2
F

s:t: JS�iJ0 ¼ 1, JS�iJ1 ¼ 1, S�iZ0, 8i ð2Þ

The above optimization problem is usually solved by k-means
algorithm. JS�iJ0 ¼ 1 means that there is only one nonzero
element in each S�i, i.e. each X�i is represented by only one basis
in dictionary B. JS�iJ1 ¼ 1 and S�iZ0 mean that the weight for the
corresponding basis is 1 to represent X�i.

The distance between local feature and dictionary (also called
codebook) utilizes histogram intersection kernel in [3]. The
objective function and kernel function are defined as (3) and (4),
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respectively

min
B,S

f ðB,SÞ ¼ JfðXÞ�fðBÞSJ2
F

s:t: JS�iJ0 ¼ 1, JS�iJ1 ¼ 1, S�iZ0, 8i ð3Þ

khikðX�i,B�jÞ ¼fðX�iÞTfðB�jÞ ¼
XD

d ¼ 1

minðXdi,BdjÞ ð4Þ

Hard-assignment vector quantization method is simple and
intuitive. However, the reconstruction error would be too high due
to too much constraints, thus leading to lower performance. Notably,
Hard-assignment vector quantization obtains better performance
with histogram intersection kernel than that with linear kernel.

Soft-assignment vector quantization for image classification: The
soft-assignment vector quantization method also adopts the
optimization problem in Eq. (2) to build dictionary. To reduce
the reconstruction error, soft-assignment vector quantization
method loosens the restrictions of descriptor’s coding, which uses
a linear combination of multiple bases to approximate X�i

Ski ¼
kðX�i,B�kÞPK

m ¼ 1 kðX�i,B�mÞ
ð5Þ

The kernel function k here can be any types of kernels, [11]
adopted gaussian kernel

kgaussðX�i,B�jÞ ¼ expð�bJX�i�B�jJ
2
2Þ ð6Þ

where b is the soft assignments factor. The soft-assignment vector
quantization achieves good performance because the Gaussian
kernel is performed as a local constraint, i.e. each bin of S�i is
corresponding to the weight of bases, and the smaller distance
between descriptor X�i and dictionary B will get a higher weight.

Locality-constrained linear coding (LLC) for image classification:
Locality-constrained linear coding [12] for image classification
uses the following criteria:

min
B,S

f ðB,SÞ ¼ JX�BSJ2
FþlJkgaussðX,BÞ � SJ2

F

s:t: 1T B�k ¼ 1, 8k ð7Þ

where

kgaussðX,BÞ ¼ ½KgaussðX�1,BÞ, . . . ,KgaussðX�N ,BÞ�

KgaussðX�i,BÞ ¼ ½expðdistðX�i,B�1Þ=sÞ, . . . ,expðdistðX�i,B�K Þ=sÞ�T

� denotes the element-wise multiplication, l is used for adjusting
the locality. The larger the l is, the more locality is considered.
LLC has several advantages. First, it can better reconstruct the raw
descriptors than VQ method. Second, the raw descriptor and its
neighboring bases construct a local coordinate system, which
would lead to local smooth sparsity, i.e. the explicit locality
adopted in LLC ensures that similar patches have similar codes.
Third, this optimization problem has the analytical solution. The
LLC method obtains better performance than VQ-based method.

Sparse coding for image classification: Sparse coding (SC) can be
considered as methods of rearranging the structure of the original
data in order to make the energy compact under over-complete or
non-orthogonal bases. Hence, the data point can be represented
as a linear combination of only few active bases that possess
overwhelmingly majority energy of the data. Sparse coding
method was firstly introduced into image classification in [2].
Unlike VQ method, sparse coding loosens the constraint on the
codes, each code can be represented by the linear combination of
several bases to minimize the reconstruction error. The sparse
coding algorithm can be written as the following formula:

min
B,S

f ðB,SÞ ¼ JX�BSJ2
Fþ2aJSJ1

s:t: JB�iJ2 ¼ 1, 8i¼ 1,2, . . . ,K ð8Þ
The regularization term is to control sparsity in S, where a is a
regularization parameter to control the tradeoff between fitting
goodness and sparseness. Sparse coding method has several
advantages. First, it can learn over-complete bases, i.e. K4D.
That is to say, each feature has opportunity to choose better base.
Second, it can achieve less reconstruction error than VQ method
and LLC method. Third, it can capture salient patterns of local
features. So image classification by sparse coding framework
achieves state-of-the-art performance on several benchmarks
such as Caltech-101, Scene 15, etc.

Locality-constrained sparse coding for image classification:
Sparse coding for image classification shows good performance,
however, due to the over-complete dictionary and the indepen-
dent coding process [14], the locality or the geometrical structure
among the instances to be encoded are lost. Gao et al. [14] and
Zheng et al. [16] proposed locality-constrained sparse coding to
preserve the local manifold structure of the instances by embed-
ding the Laplacian matrix G into sparse coding algorithm.
The objective function for locality-constrained sparse coding is
as follows:

min
B,S

f ðB,SÞ ¼ JX�BSJ2
Fþ2aJSJ1þZ trfSGST

g

s:t: JB�iJ2 ¼ 1, 8i¼ 1,2, . . . ,K ð9Þ

where Z is the regularization parameter balancing the weight
between the fitting goodness and locality preservation. The
Laplacian matrix GARN�N can be obtained by G¼W�U, where
[16] constructed the k-nearest neighbors’ distance matrix U as
follows:

U ij ¼
1 if X�jAN knnfX�ig

0 if X�j=2N knnfX�ig

(
ð10Þ

Gao et al. [14] constructed the k-nearest neighbors’ distance
matrix U as follows,

U ij ¼

XD

d ¼ 1

minðXdi,XdjÞ if X�jAN knnfX�ig

0 if X�j=2N knnfX�ig

8>><
>>: ð11Þ

N knnfX�ig represents k-nearest neighbors of X�i. The degree
matrix WARN�N is a diagonal matrix and W ii ¼

PN
j ¼ 1 U ij.
3. Proposed dictionary learning methods on manifolds

In this section, dictionary learning methods on manifolds are
proposed for image classification. First, the geometrical structure
of the single manifold is constructed by locally linear embedding
algorithm combined with k-nearest neighbors. Then, sparse
representation combined with k-nearest neighbors is adopted to
construct the geometrical structure of the multiple manifolds.
After that, we preserve these two structures to form dictionary
learning on single manifold (DLSM) method and dictionary
learning on multiple manifolds (DLMM) method, respectively.

3.1. Image features lie on a single manifold

In the classification application, the image data are often
sampled from a nonlinear low dimensional manifold embedding
in a high dimensional space (see in Fig. 1 (a)). In the situation of a
single manifold, each data point and its neighboring points are
close to or event lie on a locally flat patch of the manifold. A very
straightforward idea in modeling this global nonlinear structure is
to learn from locally linear fitting.



Fig. 1. Data in the features space and codes space. (a) The original image features lying on the manifold and (b) the corresponding feature codes.

Fig. 2. Data in the features space and codes space. (a) The original image features lying on the two manifolds and (b) the corresponding feature codes.
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Let X�i represent the ith data point, and N knnfX�ig represent its
k-nearest neighbors. For most cases, five nearest neighbors are
considered. The local topology around X�i can be characterized by
the linear combination of its neighbors as follows:

X�i �XU i�

s:t:
XN

j ¼ 1

U ij ¼ 1&U ij ¼ 0 for X�j=2N knnfX�ig ð12Þ

where UARN�N is the coefficient matrix.
In this paper, k is set to 5 and locally linear embedding (LLE)

[7] algorithm is used to obtain the coefficient matrix U of the
single manifold’s graph.

3.2. Image features lie on multiple manifolds

The majority of real-world data often reside on multiple
manifolds [24], whose manifold structures, such as curvature
variation, may differ a lot. They may also overlap or intersect
(Fig. 2(a)). This makes the whole scenario much more compli-
cated. By manifold learning, we hope to analyze these manifolds
separately. We still model the underlying geometrical structure
patchwise. Thus for a certain data point, the true neighborhood on
the same manifold instead of the entire space is needed firstly.
However, existing manifold learning algorithms, such as locally
linear embedding algorithm and Laplacian eigenmaps, define the
neighborhood relationship only according to the Euclidean dis-
tance, which is insufficient. In other words, data points on a
nearby manifold may be involved mistakenly as the neighboring
point in the fix-sized neighborhood used in LLE. To preserve the
topology of multiple manifolds, we assume that each manifold is
smooth [25], and the local data points lying on the same manifold
are homogenous in a certain sense such as direction, while
overlaps or intersections under different manifolds are not ruled
out. We propose to utilize sparse representation algorithm
combined with k-nearest neighbors to fit the topology of these
multiple manifolds, with the consideration that sparse represen-
tation is capable of approximating the data point by selecting the
homogenous neighbors adaptively and thus guarantees the
smoothness of the manifold. This is helpful in identifying the
neighborhood relationship on the same single manifold. And in
fact we want to preserve the structure of the same single
manifold in the following processing.

To demonstrate our conclusion, we carry out an experiment on
ORL face database. The ORL face database contains 10 images for
each of forty human faces with each lying on the same manifold.
Each data point and its k-nearest neighbors (5, 10, 15, 20, 25, 30,
35, 40, 45, 50, 100, 150, 200, 250, 300, 350, 399) are executed
twice by locally linear embedding algorithm and sparse repre-
sentation algorithm, respectively. For each data point, given the
initial size of neighborhood (characterized by the number of
selected neighboring points), the percentages of number and
absolute coefficients summation of neighbors on the same mani-
fold (belongs to the same human) are calculated. And the means
of the percentages of number and absolute coefficients summa-
tion of neighbors lying on the same manifold for all data points
are given. For locally linear embedding, the initial nearby points
are all used as the neighboring points; whereas, for sparse
representation algorithm, the active points with nonzero coeffi-
cients after sparse coding, the subset of the initial points, are
selected as the neighboring points. Fig. 3 shows the percentage of
number of neighbors lying on the same manifold with varying
number of neighbors. From Fig. 3, we can see that most data
points and their five neighbors lie on the same manifold. The
percentage of number of neighbors on the same manifold is
83.45% among k-nearest neighbors, and 83.33% selected after
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sparse representation combined with k-nearest neighbors. With
the increasing number of neighbors, this value decreases till 2.26%
for 399 among k-nearest neighbors. This indicates that almost all
data points’ neighbors are not on the same manifold. However,
this percentage achieves 31.37% selected after sparse representa-
tion. So sparse representation algorithm combined with k-nearest
neighbors is capable of selecting effective ones from neighbors
and removing the neighbors that do not lie on the same manifold
especially when the initial nearby points distribute on the
different manifold structures. Another statistical quantity, the
percentage of summation of absolute fitting coefficients of neigh-
bors on the same manifold in all the coefficients constructing the
graph model, is much more convincing than the percentage of
number of neighbors on the same manifold. From Fig. 4, we can
see that even for 399 neighbors, (i.e. only nine neighbors are on
the same manifold, and other 390 neighbors distribute on the
other 39 manifolds), the percentage of summation of absolute
fitting coefficients of neighbors on the same manifold by sparse
representation combined with k-nearest neighbors is 72.54%,
much higher than 7.89% by locally linear embedding combined
with k-nearest neighbors. And with the number of neighbors
increasing, this percentage by sparse representation combined
with k-nearest neighbors maintains at 72%. This result is bene-
ficial for complex scenario with multiple manifolds. From the
comparison, sparse representation combined with k-nearest
neighbors is capable of capturing the similar response as neigh-
bors on the same manifold and therefore constructing the graph
model for multiple manifolds in an unsupervised way. In other
words, it is sort of resistant to the initial k-nearest neighboring
points. Here, we use l1-norm minimization technique:

f ðUknn
i� Þ ¼ JX�i�N knnðX�iÞU

knn
i� TJ2

þ2l9Uknn
i� 9 ð13Þ

where X�iARD�1 represents the ith data point of X.
N knnðX�iÞARD�knn represents the data point’s k-neighbors.
Uknn
i� AR1�knn is the corresponding sparse coefficient under the

bases N kðX�iÞ.

U ij ¼
Uknn

ij if X�jAN knnðX�iÞ

0 if X�j=2N knnðX�iÞ

(
ð14Þ

In this section and Section 6.6.3, feature-sign search algorithm
[22] is used, and the l in Eq. (13) is set to 80. In the later part of
the paper for image classification, knn is set to 10, feature-sign
search algorithm [22] is adopted to obtain the coefficient matrix
U of multiple manifolds graph, and l is set to 0.05.

3.3. The objective function of dictionary learning on manifolds

The geometrical structure represented by UARN�N is pre-
served during the sparse coding procedure. Specifically, when the
features X are transformed to the new features SARK�N , the local
geometrical structure is preserved through the relationship U for
S, which can be obtained by minimizing the following term (see
in Figs. 1 and 2):X

i

JS�i�SU�iJ
2
¼ JS�SUJ2

F ¼ trðSðI�UÞðI�UÞT ST
Þ ¼ trfSGST

g ð15Þ

where GARN�N , trfSGST
g is the preservation of local geometry

structure in the sparse space.
We incorporate the preservation term of local geometry

structure trfSGST
g into sparse coding algorithm as a regularization

term. The dictionary learning on single manifold (DLSM) algo-
rithm and dictionary learning on multiple manifolds (DLMM) can
be unified into the same framework and gained from minimizing
the following objective function:

ODL ¼ JX�BSJ2
Fþ2aJSJ1þZ trfSGST

g ð16Þ

where the first term is the fitting error, the second term
encourages the sparseness, and the third term is the locality
constraint. Z is the regularization parameter balancing the weight
between the fitting goodness and geometrical structure. a is the
regularization parameter adjusting the sparsity. When applying
the U in Eqs. (12)–(15), dictionary learning on single manifold
(DLSM) can be obtained by solving Eq. (16). When applying the U
in Eqs. (13)–(15), dictionary learning on multiple manifolds
(DLMM) can be obtained by solving Eq. (16). It is important to
note that the form of our objective function is similar to that of
[14,16]; however, it is quite different as for representing the
topology. For the graph model preservation in [14,16], the author
proposed to use Laplacian matrix to preserve the distance
between the data point and its neighbors. Our DLSM method
utilizes the weight matrix obtained by LLE algorithm combined
with k-nearest neighbors to preserve the data point’s fitting
coefficients. And our DLMM method adopts the weight matrix
obtained by sparse representation algorithm combined with
k-nearest neighbors to preserve the data point’s fitting coeffi-
cients. Our DLMM method has the advantage of handling multiple
manifolds scenario.
4. Optimization of the objective function

In this section, we focus on solving the minimization of the
objective function proposed in (16). This optimization problem is
not jointly convex in both B and S, while it is separately convex in
either B or S with S or B fixed. So it can be decoupled into the
following two optimization subproblems which can be solved by
alternating minimizations.

Finding the sparse codes is as follows:

min f ðSÞ ¼ JX�BSJ2
Fþ2aJSJ1þZ trfSGST

g ð17Þ
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Learning bases are as follows:

min f ðBÞ ¼ JX�BSJ2
F

s:t: JB�iJ2 ¼ 1, 8i¼ 1,2, . . . , K ð18Þ

In the following subsection, a coordinate descent algorithm is
introduced to resolve these two optimization problems.

4.1. Finding sparse codes

By fixing B, we update S to decrease the value of the objective
function

f ðSÞ ¼ JX�BSJ2
Fþ2aJSJ1þZ trfSGST

g

¼ trfXT X�2XT BSþST BT BSgþ2aJSJ1þZ trfSGST
g

¼ trfXT Xg�2
XN

n ¼ 1

½XT B�n�S�nþ
XN

n ¼ 1

ST
�nBT BS�n

þ2a
XK

k ¼ 1

XN

n ¼ 1

9Skn9þZ
XK

k ¼ 1

Sk�GST
k� ð19Þ

Ignoring the constant term trfXT Xg, the objective function of
Skn reduces to (20) with B and fS1n,S2n, . . . ,Skng=Skn fixed

f ðSknÞ ¼ S2
knf½B

T B�kkþZGnngþ2a9Skn9

þ2Skn

XK

l ¼ 1,lak

½BT B�klSlnþZ
XN

r ¼ 1,ran

GnrSkr�½B
T X�kn

( )

¼ S2
knf½B

T B�kkþZGnngþ2a9Skn9�2SknHkn ð20Þ

where Hkn ¼ ½B
T X�kn�

PK
l ¼ 1,lak½B

T B�klSln�Z
PN

r ¼ 1,ran GnrSkr .
Here, ½BT B�kk ¼ 1, and Gnn40. So f ðSknÞ is piece-wise parabolic

function that opens up. Based on the convexity and monotonic
property of the parabolic function, it is not difficult to know that
f ðSknÞ reaches the minimum at the unique point

Skn ¼ fmaxfHkn,agþminfHkn,�agg=f1þZGnng ð21Þ
4.2. Learning bases

Without the sparseness regularization term in (17) and addi-
tional constraints in (18), Sk� and B�k are dual in objective
function JX�BSJ2

F for 8kAf1,2, . . . ,Kg. Hence, 8dAf1,2, . . . ,Dg,
kAf1,2, . . . ,Kg, with fBpq,p ¼ 1,2,...,D,q ¼ 1,2,...,Kg=Bdk and S fixed, the
unconstrained single variable minimization problem of (18) has
the closed-form solution

Bdk ¼ arg min
Bdk

JX�BSJ2
F ¼
½XST
�dk�

PK
l ¼ 1,lak Bdl½SST

�lk

½SST
�kk

ð22Þ

while JSk�J140.
Since the optimal value for Bdk does not depend on the other

entries in the same column, the objective function of B�k reduces
to (23) with S fixed

f ðB�kÞ ¼ ½Sk�½Sk��
T �½½B�k�

T B�k�þ2½B�k�
Tf ~B

k
S½Sk��

T�X½Sk��
T g ð23Þ

where

~B
k
¼

B�p, pak

0, p¼ k

(
:

When imposing the norm constraint, i.e. JB�kJ2 ¼ ½B�k�
T B�k ¼ 1,

(23) becomes (24)

f ðB�kÞ ¼ 2½B�k�
T f ~B

k
S½Sk��

T�X½Sk��
TgþSk�½Sk��

T ð24Þ

Hence, the original constrained minimization problem
becomes a linear programming under a unit norm constraint,
whose solution is as follows:

B�k ¼
X½Sk��

T� ~B
k
S½Sk��

T

JX½Sk��
T� ~B

k
S½Sk��

TJ2

ð25Þ

4.3. Convergence analysis

Assuming that ðBt ,St
Þ is the result after the tth iteration,

and ðBtþ1,Stþ1
Þ is the result after the ðtþ1Þth iteration. Since

the exact minimum point is obtained by (21) and (25), each
update operation will monotonically decrease the value of corre-
sponding objective function. Considering that the objective
function is obviously bounded below, and f ðBt ,St

ÞZ f ðBt ,Stþ1
ÞZ

f ðBtþ1,Stþ1
Þ, it converges.

4.4. Overall algorithm

Our algorithm for learning dictionary is shown in Algorithm 1.

Algorithm 1. Learning dictionary on manifolds.
Require Data matrix XARD�N and K
1:
 B’randðD,KÞ,B�k ¼
B�k

JB�kJ2
8k, S’zerosðK ,NÞ
2:
 iter¼0

3:
 while ðf ðiterÞ�f ðiterþ1ÞÞ=f ðiterÞ41e�5 do

4:
 iter’iterþ1

5:
 Update S:

6:
 Compute A¼ ðBT BÞ � ð1�IÞ, C ¼ G� ð1�IÞ and E¼ BT X

7:
 for n¼ 1;nrN;nþþdo

8:
 for k¼ 1; krK; kþþdo

9:
 Skn ¼ fmaxfEkn�Ak�S�n�ZSk�C�n,agþ

minfEkn�Ak�S�n�ZSk�C�n,�agg=ð1þZGnnÞ
10:
 end for

11:
 end for

12:
 Update B:

13:
 Compute F ¼ ðSST

Þ � ð1�IÞ, W ¼XST
14:
 for k¼ 1; krK; kþþdo

15:
 B�k ¼

W�k�BF�k
JW�k�BF�kJ2
16:
 end for

17:
 Update the objective function:

18:
 f ¼ JX�BSJ2

Fþ2aJSJ1þZ trfSGST
g

19:
 end while

20:
 return B, and S
Here, 1ARK�K is a square matrix with all elements 1, IARK�K

is the identity matrix, and � indicates element dot product. By
iterating S and B alternately, the sparse codes are obtained, and
the corresponding bases are learned.
5. Implementation for image coding and spatial pooling

After learning the dictionary B, we implement our algorithm
on image coding and spatial pooling. First, we find the relation-
ship between the features Y ARD�M in image J and X (features
for learning dictionary), let PARN�M represent this relationship.
P can be obtained according LLE algorithm [7] for DLSM and
feature-sign search algorithm [22] for DLMM. Then, the objective
function in the image coding step with dictionary fixed can be
formulated as

min f ðVÞ ¼ JY�BVJ2
Fþ2aJVJ1þZJV�SPJ2

F ð26Þ
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V is the sparse codes for image features Y . Similar to solve (17),
the solution to the minimization of (26) is as follows:

Vkm ¼ ðmaxfHkm,agþminfHkm,�agÞ=ð1þZÞ ð27Þ

where Hkm ¼ ½B
T Y �kmþZ½SP�km�

PK
l ¼ 1,lak½B

T B�klV lm.
After coding each image, we split it into three levels (i.e. a

three level spatial pyramid) with L(1þ4þ16) regions. Then each
region is pooled to a vector, and all L vectors are concatenated
together to form the representation of the target image. The
pooling strategy adopted is max. An image can be represented as
follows:

Z ¼ fhistmax
1 T,histmax

2 T , . . . ,histmax
L Tg ð28Þ

where histmax
l ¼maxðfV�igiAOl Þl ¼ 1,...,L. Ol represents the features

distributing in the lth region. Image coding and SPM pooling is
shown in Algorithm 2.

Algorithm 2. Image coding and SPM pooling.
1 Fo

resolutio
Require K, L, a, Z, Y ARD�M ,PARN�M , BARD�K , SARK�N
V’zerosðK ,MÞ, Z’zerosðK � L,1Þ

2:
 Image Coding:
iter¼0

4:
 while ðf ðiterÞ�f ðiterþ1ÞÞ=f ðiterÞ41e�5 do
iter’iterþ1

6:
 Update V:
Compute A¼ ðBT BÞ � ð1�IÞ and E¼ BT YþZSP

8:
 for k¼ 1; krK; kþþ do
Vk� ¼ fmaxfEk��Ak�V ,agþminfEk��Ak�V ,�agg=ð1þZÞ

10:
 end for
Update the objective function:

12:
 f ¼ JY�BVJ2

Fþ2aJVJ1þZJY�SPJ2
F

end while

14:
 SPM Pooling:
for l¼ 1; lrL; lþþdo

16:
 histmax

l ¼maxðfV�igiAOl Þ, l¼ 1, . . . ,L
end for

18:
 Z ¼ fhistmax

1 T,histmax
2 T, . . . ,histmax

L Tg
return Z
6. Experimental results

In this section, our DLSM and DLMM algorithms for image
classification are evaluated on four benchmark data sets, includ-
ing UIUC-Sports data set [26], Scene 15 data set [1,27,28], Caltech-
101 data set [29] and Caltech-256 data set [30]. Parameter
settings are given first. Then experimental results and analysis
are demonstrated, and some discussions are listed finally.

6.1. Parameter settings

For each data set of image classification, the data are randomly
split into the training set and the testing set based on published
protocols. To make the results more convincing, the experimental
process is repeated eight times, and the mean and standard
deviation of the classification accuracy are recorded. Each image
is resized with maximum side 300 pixels first.1 As for the image
features, densely sampling patches are extracted with the patch
size and step size 16�16 and 8 pixels, respectively, and 128 dim-
ensional SIFT descriptors [31] are obtained with grid size 4�4.
r UIUC-Sports data set, we resize the maximum side to 400 due to the high

n of original image.
The number of samples used for learning dictionary is about
120,000 and the dictionary size is 1024. Spatial pyramid matching
kernel is embedded in the pooling step (the image is split into
three layers, each of which has 1, 4, and 16 segments, respec-
tively). The pooling strategy is max [2]. An image is represented
as the concatenation of each segment with length 21,504 and
normalized to 1 with l2-norm. Linear kernel SVM classifier and
one against all multi-classification strategy are adopted, and
LIBSVM [23] package is used.

There are two parameters: a and Z. The parameter a is used for
adjusting the sparsity of the codes. The bigger a is, the sparser the
codes are. Yang et al. [2] have obtained the empirical value 0.15
for a. The parameter Z is used for balancing the weight between
the fitting goodness term and the geometrical structure preser-
ving term. In this paper, a is set to 0.15 and Z is set to 0.2 (for
details, see Section 6.6.1).

For experiment of comparison on strong manifolds structures,
the procedure is similar to the image classification in addition to
the lack of pooling step. The dimension of features is
112n92¼ 10,304, and the dictionary size is 200. The parameter
a is set to 0.15 and Z is set to 0.8. The first five faces of each class
are selected as the training set and the rest are the testing set.
Linear kernel SVM classifier and one against all multi-
classification strategy are adopted, and we use LIBSVM [23]
package for the implementation.
6.2. UIUC-Sports data set

For UIUC-Sports data set [26], there are eight classes with
totally 1579 images: rowing (250 images), badminton (200
images), polo (182 images), bocce (137 images), snow boarding
(190 images), croquet (236 images), sailing (190 images), and
rock climbing (194 images). For each class, the sizes of the
instances in the same scene are very different, and the poses of
the objects vary a lot. In addition, the background of each image is
highly cluttered and discrepant. Even the number of the instances
in the same category changes greatly. Some images from different
classes have similar background (see in Fig. 5). We follow the
common setup: 70 images per class are randomly selected as the
training data, and 60 images per class for testing. Figs. 6 and 7
show the confusion matrices of our DLSM and DLMM method for
image classification. Table 22 shows the performance of different
methods. We notice that the classes of croquet and bocce have a
high probability of being classified mistakenly, because these two
classes are visually similar to each other. Furthermore, the
classification rate by DLSM and DLMM is almost the same.
6.3. Scene 15 data set

For Scene 15 data set, there are 15 classes, with totally 4485
images. Each class varies from 200 to 400 images. The images
contain not only indoor scenes, such as bedroom, living room,
PARoffice, kitchen, and store, but also outdoor scenes, such as
industrial, forest, mountain, tallbuilding, highway, street, open-
country, and so on (see in Fig. 8). We use an identical experi-
mental setup as [1], where 100 images per class are randomly
selected as the training data, and the rest for testing. Figs. 9 and
10 show the confusion matrices of our DLMM and DLSM method
for image classification. Table 3 lists the comparisons of our two
methods with previous work for image classification.
2 All the results of OCSVM and HIKVQ are based on step size 8 and without

concatenated Sobel images.



RockClimbing badminton bocce croquet polo rowing sailing snowboarding

Fig. 5. Example images from the UIUC-Sports data set. For each class, the instances in the same category are very different, the pose of the objects vary a lot, and the

background of each is highly clutter and discrepancy. Some images from different classes have similar background.

Fig. 6. Confusion matrix on UIUC-Sport data set (%) by DLSM.

Fig. 7. Confusion matrix on UIUC-Sport data set (%) by DLMM.
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Table 2
Performance comparison on UIUC-Sports data set.

Methods Average classification rate (%)

HIKVQ [3] 81.8771.14

OCSVM [3] 81.3371.56

ScSPM [2] 82.7471.46

KScSPM [32] 84.9270.78

LScSPM [14] 85.3170.51

DLSM 86.8271.04

DLMM 86.9370.99

MITforeCALsuburb MITcoast

MITmountain MITopencountry MITstre

bedroom industrial kitchen

Fig. 8. Example images from the Scene 15 data set. The image

Fig. 9. Confusion matrix on Scen
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6.4. Caltech-101

Caltech-101 data set introduced in [29] contains 102 classes,
one of which is the background. After removing the background
class, the rest 101 classes with totally 8677 images are used for
classification, with each class varying from 31 to 800 images. We
follow the common experimental setup for this data set, where 15
and 30 images per category are selected as the training set, and
the rest for the testing set (for training on 15 images per category,
the maximum is 20 images per category for testing, and for
training on 30 images per category, the maximum is 50 images
st MIThighway MITinsidecity

et MITtallbuilding PARoffice

livingroom store

s contains not only indoor scene, but also outdoor scene.

e 15 data set (%) by DLSM.



Fig. 10. Confusion matrix on Scene 15 data set (%) by DLMM.

Table 3
Performance comparison on scene 15 data set.

Methods Average classification rate (%)

KSPM [1] 81.470.5

KC [11] 76.770.4

HIKVQ [3] 81.7770.49

OCSVM [3] 82.0270.54

ScSPM [2] 80.2870.93

KScSPM [32] 83.6870.61

LScSPM [14] 89.7570.50

DLSM 83.4070.44

DLMM 83.6770.49

Table 4
Performance comparison on Caltech-101 data set.

Methods 15 training 30 training

KSPM [1] – 64.670.8

KC [11] – 64.171.2

LLCa [12] 63.9270.46 70.6370.99

ScSPM [2] 67.070.45 73.270.54

DLSM 66.8870.53 74.3970.82

DLMM 67.5470.41 74.8770.67

a For LLC, we adopt the code of local feature coding provided by [12] and do

experiment on our data set with single scale features and the size of diction-

ary 1024.

Table 5
Performance comparison on Caltech-256 data set.

Methods 15 training 30 training 45 training 60 training

LLCa [12] 28.0070.36 33.3470.57 36.2470.37 38.0870.39

ScSPM [2] 27.7370.51 34.0270.35 37.4670.55 40.1470.91

KScSPM [32] 29.7770.14 35.6770.10 38.6170.19 40.3070.22

LScSPM [14] 30.0070.14 35.7470.10 38.5470.36 40.4370.38

DLSM 29.3170.58 35.1270.34 37.6270.57 39.9670.62

DLMM 30.3570.42 36.2270.33 38.9770.56 41.0970.44

a For LLC, we adopt the code of local feature coding provided by [12] and do

experiment on our data set with single scale features and the size of diction-

ary 1024.
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per category for testing). Table 4 shows the performance of
different methods.
6.5. Caltech-256

Caltech-256 data set introduced in [30] contains 257 classes,
one of which is the background. After removing the background
class, the rest 256 classes with totally 29,780 images are used for
classification. Due to much higher intra-class variability and
higher object location variability compared with Caltech-101,
Caltech-256 is a very challenging data set so far for image
classification. We follow the common experimental setup for this
data set: 15, 30, 45 and 60 training images per category and 15
testing images per category. Table 5 shows the performance of
different methods.

6.6. Experiments revisit

In this section, we revisit the experiments, and give the best
parameter selection for balancing the weight among the fitting
goodness, sparsity and the geometrical structure at first. Then, the
comparison of DLSM and DLMM is also presented.
6.6.1. Parameter selection

The parameter a is the regularization parameter to control the
tradeoff between the fitting goodness and the sparseness. With
the increasing value of a, the codes become sparser and sparser,
more and more salient, easy to distinguish; on the contrary, the
reconstruction error becomes larger and larger, which will lead to
inaccurate description of the codes. The parameter Z is the
regularization parameter to balance between the fitting goodness
and the geometrical structure. With the increasing value of Z, the
geometrical structure becomes more and more reliable; the codes
becomes more and more reasonable, and the reconstruction error
becomes larger and larger. These two parameters are the compe-
titors of reconstruction error.

First, we studied the effect of different Z for DLMM and DLSM.
Fig. 11(a) lists the performance when Z¼ f0:0,0:1,0:2,0:3,
0:4,0:6,0:8,1:0g with a¼ 0:15. As can be seen, when Z¼ 0:0, DLSM
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Fig. 11. Selection of parameters. (a) The classification rate under different Z (Caltech-101) with a¼ 0:15 and (b) the classification rate under different a (Caltech-101)

with Z¼ 0:2.

Table 6
Comparison on ORL face data set among different k-neighbors.

k-Neighbors 5 10 15 20 30 40 50

DLMM (%) 92.5 94 94 95.5 97 96 95.5

DLSM (%) 94 94 93.5 94 92.5 94.5 95

SC (%) 93

k-neighbors 60 70 80 90 100 150 199

DLMM (%) 94.5 95.5 95 95 95 95 95.5

DLSM (%) 95.5 95 93.5 93.5 93.5 91.5 91.5
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and DLMM are equivalent to sparse coding based dictionary
learning method. With Z growing, the classification rate increases.
The best classification accuracy can be obtained when Z¼ 0:2.
After that, the performance starts to degenerate. When applying
Z¼ 0:2 to other data sets, we can also achieve the optimal results.
Then, following the steps to obtain the optimal Z, we fix
a¼ f0:05,0:1,0:15,0:2,0:25,0:3gwith Z¼ 0:2, and obtain the optimal
a¼ 0:15 (see Fig. 11(b)).

6.6.2. Comparison of DLSM and DLMM

According to the experimental results, we can see that, for the
small size of data set, both DLSM and DLMM can achieve
satisfying results, such as UIUC-sports data set and Scene 15 data
set. However, with the increase of the size of the data and the
number of the category, DLMM method becomes superior to
DLSM. This is because, with the increase of the size of the data
and the number of the category, the complexity of image patches
is raising, so that single manifold cannot fit the cases well.

With the increasing number of the training data, the improve-
ment of DLSM decreases faster than DLMM compared with ScSPM.
When 60 training data per category is adopted, the classification
accuracy is lower than ScSPM, which means that the single manifold
cannot represent the real image features. Co-incidently, in [14], the
author also concluded that as the number of training data increases,
the improvement of LScSPM also decreases. When 60 training data
per category is adopted, the classification rate merely exceeded
0.29%. However, our DLMM method exceeded 0.95%.

6.6.3. Comparisons on strong manifolds structures

To evaluate the effect of k-neighbors, we carry out an experi-
ment on ORL face databases with strong manifolds structures. The
ORL face data set contains 10 images for each of 40 human faces
with each lying on the same manifold. The mean classification
accuracy for each class is recorded (see in Table 6). From Table 6,
the classification accuracy for the traditional sparse coding is 93%.
The best classification accuracy for DLMM is 97%. And the best
classification accuracy for DLSM is 95.5%. The classification
accuracy for DLSM is high, because all the human faces are very
similar, and single manifold may be approaching smooth.
Obviously, the multiple manifolds structure is more reasonable
than the single manifold structure.

From the comparison of k-neighbors, we can see that for DLMM,
the classification accuracy is stable except when the number of
neighbors is set to 5, because 5-neighborhood is too small to
construct the multiple manifolds structures. For DLSM, the classifi-
cation accuracy is unstable. When the number of neighbors is set to
a large number, such as 150 or 199, the classification rate is less
than the traditional sparse coding algorithm.
7. Conclusion

In this paper, we have proposed dictionary learning methods
on manifolds for image classification. The methods consider
the intrinsic geometrical structures identified by locally linear
embedding on single manifold and sparse representation on
multiple manifolds, respectively. Then the geometrical structures
are embedded into sparse coding algorithm in an unified frame-
work so as to preserve them during the sparse coding procedure.
After that, a coordinate descent scheme is proposed to solve the
optimization subproblems. The uncovered manifold structure
makes it more congruent with image classification task. Experi-
mental results on four benchmark data sets demonstrate that our
proposed algorithm leads to more effective image representation
and gains better classification performance. For the future, learn-
ing kernel based dictionary on manifolds will be carried out. And
more rational topology will also be explored to improve the
performance of image classification.
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