
IMAGE INPAINTING VIA WEIGHTED SPARSE NON-NEGATIVE MATRIX 
FACTORIZATION* 

 
Yu-Xiong Wang, Yu-Jin Zhang 

 
Department of Electronic Engineering, Tsinghua University 

Tsinghua National Laboratory for Information Science and Technology, Tsinghua University 
Beijing 100084, China 

albertwyx@gmail.com, zhang-yj@tsinghua.edu.cn 
 

                                                 
* This work was partially supported by National Nature Science Foundation (NNSF: 60872084). 

ABSTRACT 
 
This paper proposes a novel patch propagation inpainting 
algorithm based on Weighted Sparse Non-negative Matrix 
Factorization (WSNMF). Unlike existing methods, we cast the 
inpainting task as a sequential low-rank matrix recovery and 
completion problem, where the incomplete data matrix consists of 
the image patch to be inpainted and several similar intact candidate 
patches under the assumption that they can be described using a 
low-dimensional linear model. Besides, the non-negativity and 
sparsity constraints are enforced for the additive sparse linear 
combination. The WSNMF, based on the Expectation-
Maximization (EM) procedure, is then introduced to predict 
missing values. Experimental results show that this approach 
exploits the available information from the source region more 
adequately and thus has capabilities to recover both structure and 
composite textures more effectively as well as preventing 
unwanted artifacts compared to current exemplar-based techniques. 
 

Index Terms— Image inpainting, Non-negative Matrix 
Factorization (NMF), matrix completion, weighted low-rank 
approximation 
 

1. INTRODUCTION 
 
How can we make computer modify an image in a visually 
undetectable way analogous to sophisticated artists? This is quite 
an amazing topic in both art and image processing areas, with 
applications from the restoration of damaged paintings and 
photographs to the removal of selected objects. Image inpainting 
exactly aims to reconstitute the missing region (called the target 
region) using information from the remaining image areas (called 
the source region). 

The challenge of image inpainting roots deeply in the nature 
of real-world scene photographs, which often consists of 1-D or 0-
D linear structures, such as edges and corners, and 2-D pure or 
composite textures [3, 4]. The boundaries (or called the fill front) 
between the target and source regions are a complex product of the 
mutual influences of these factors. In this sense, propagating the 
spatially interacted multiple textures while preserving the 
structures becomes the core concern. 

The existing image inpainting techniques can be divided into 
two categories: diffusion-based approach [1, 2] and exemplar-

based approach [3, 4, 11, 13, 14]. They differ from each other on 
the focused image level, and thus have disparate performance. The 
former tackles the filling-in problem by diffusing the image from 
the known surrounding regions into the missing region at the pixel 
level by using the variational principles and partial differential 
equations (PDE). Hence, it is superior for structure propagation or 
relatively smaller missing region, yet poor in handling textured or 
large region due to the introduction of smoothing effect. The latter 
propagates the image information at the patch level based on the 
texture synthesis technique. By incorporating the patch priorities to 
determine the filling order, the exemplar-based method can deal 
with structure propagation as well as texture propagation, and 
hence outperforms the diffusion-based one with respect to large 
missing region. 

One of the core stages in exemplar-based inpainting 
algorithms is how to synthesize the needed texture by exploiting 
the known candidate patches from the source region. Criminisi et 
al. selected the single best match patch in taking the risk of putting 
all eggs in one basket [3, 4]. Wong and Orchard proposed a 
nonlocal-means approach to infer the target patch by weighting a 
set of similar candidate patches [13]. This indeed reduces the 
greediness; nevertheless it also introduces unwished blurring effect. 
Shen et al. borrowed the signal sparse representation theory to fit 
the missing patch by sparse combination of a redundant dictionary 
constructed by source patches [11]. Xu and Sun furthered the 
sparse representation model by introducing more regulation terms 
[14]. In both cases, the sharp recovery results are achieved together 
with less greedy procedure. However, in our experiments, it is 
found that the most similar candidate patch always takes a 
dominant role with coefficient up to 0.8 to 0.9 far outweighing 
other patches, even if there exist some patches of nearly equal 
similarity. Meanwhile, the candidate patches with smaller 
similarity have little effect in the combination and the helpful 
information from them is lost, though the dictionary itself is over-
complete. For that matter, this approach is still greedy, leading to 
unwanted object in the recovered region. The foregoing strategies 
are alike in that they handle the fitting problem in the original 
image domain. To utilize the available information more 
adequately, we change to the transformed domain, and treat the 
inpainting problem under the framework of sequential low-rank 
matrix recovery and completion. To be specific, we assume the 
image patch to be inpainted and the top several similar candidate 
patches as random samples from the same source to construct an 
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incomplete data matrix. This is thus a matrix completion problem, 
which has been well studied and can be solved by weighted low-
rank approximation approaches [12]. Here the modified Weighted 
Sparse Non-negative Matrix Factorization (WSNMF) algorithm is 
applied to accord with the characteristics of inpainting problem. 

The remainder of this paper is organized as follows. In 
Section 2 the weighted low-rank approximation and non-negative 
matrix factorization theory are reviewed briefly. The proposed 
inpainting algorithm is elaborated in Section 3. Section 4 shows 
the experimental results. Discussions and conclusions are drawn in 
Section 5. 
 

2. WEIGHTED NMF 
 
Low-rank approximation (LRA), which tries to find a 
parsimonious representation, is a fundamental tool in multivariate 
data analysis. The formulation of LRA can be regarded as 
decomposing the original data matrix into two or three low-rank 
factor matrices. By imposing the non-negativity constraint, Lee 
and Seung initiated a new LRA paradigm called Non-negative 
Matrix Factorization (NMF) [7]. Due to the purely additive 
combination, NMF obtains the parts-based representation and thus 
enhances the interpretability of the issue. 

In the case of incomplete data matrix with some entries 
missing or unobserved, matrix completion is imperative to predict 
missing elements while obtaining the low-rank representation [12]. 
By introducing a weight matrix with binary weights 1 or 0 to 
differentiate between the observed and unobserved values, the 
matrix completion problem can be solved through Weighted Non-
negative Matrix Factorization (WNMF) [9]. Such approach has 
been applied in collaborative filtering successfully [6, 15]. 

Generally speaking, given an M-D random vector x with non-
negative elements, whose N observations are denoted as xj, j=1,2,…,N, 
let data matrix be 1 2 0[ , ,..., ] M N

N
×

≥= ∈X x x x

0

, NMF seeks non-

negative basis matrix M L×
≥∈U and coefficient matrix 0

L N×
≥∈V , 

such that ≈X UV . Using Frobenius norm as the measurement, it 
minimizes the following objective function 

2 21 1( , ) ( [ ] )
2 2NMF ij ijF

ij
F = − = ∑X UV X UV X - UV         (1) 

And WNMF seeks to minimize the following objective function 
21( , ) ( [ ] )

2WNMF ij ij ij
ij

J = ∑X UV W X - UV                  (2) 

where Wij are non-negative weights. 
WNMF can be solved by introducing the weight matrix and 

modifying the standard NMF iterative update rules [6, 9]. An 
alternative is to employ the EM algorithm where missing entries 
are replaced by the corresponding values in the current model 
estimation at the E-step, and the unweighted NMF is applied on 
the filled-in matrix at the M-step [6, 15]. 
 

3. INPAINTING ALGORITHM 
 
We now elaborate the inpainting algorithm via WSNMF. Given an 
input image I, the user selects a target region Ω to be removed and 
filled. The remaining or manually specified areas can be defined as 
the source region Φ. The boundary of the target region is indicated 
by δΩ. The M-D vector Ψp, denoting the k image patch 
centered at pixel p, is the basic processing unit in the exemplar-
based approach. The whole inpainting procedure consists of the 

propagation of patches inward sequentially from the continuously 
updated boundary according to predefined filling order. 

k×

 
3.1. Filling order 
 
A crucial technique in exemplar-based inpainting algorithm is how 
to determine the filling order so as to balance the recovery of both 
texture and structure. Here we follow the method proposed by 
Criminisi et al. [3, 4], which encourages the filling-in of patches on 
the high-confidence structure. At each step, the patch priority P(p) 
for every pixel p on the boundary δΩ is computed, and then the 
patch Ψpm with the highest priority is selected as the target patch in 
the current iteration. The details of the patch priority computation 
can be found in [3, 4]. 
 
3.2. Construction of data matrix and weight matrix 
 
Once the target patch Ψpm has been found, it can be filled by using 
the available information from the source region as much as 
possible. Similar to [11, 13, 14], we search N-1 patches denoted as 
Ψqj, j=2,…,N in the source region, which are most similar to Ψpm. 
Formally 

, 2,..., 1\
arg min ( , )

q qk k j
qj pm qd

= −Ψ ∈Φ Ψ
=Ψ Ψ Ψ                         (3) 

where the distance between two patches is still 
measured by the sum of squared differences (SSD) defined in the 
already filled parts of both patches. Taking account of the 
computational consumption, the original source region in the 
whole image can be shrunk into sub-source region defined in a 
window of certain size centered at the target pixel. 

( , )a bd Ψ Ψ

So the data matrix is constructed as 
2 01 2[ , ,..., ,... ] [ , ,..., ]pm q qj qN N

M N×
≥∈= =X Ψ Ψ Ψ Ψ X X X       (4) 

whose column vectors are assumed as N observations of the same 
random vector. It should be pointed out that the components of 
Ψpm corresponding to the unknown pixels located in the target 
region are simply replaced with 0. Since the patch Ψpm is an 
incomplete signal with some elements lost while Ψqj, j=2,…,N are all 
intact, the data matrix X needs to be completed. 

Before utilize the following NMF approach for matrix 
completion, we are supposed to define the corresponding weight 
matrix 1 2 0[ , ,..., ] M N

N
×

≥= ∈W W W W  first. 
Different weights assigning strategies have been adopted for 

the incomplete and complete signals in X, respectively. For W1, the 
binary weights are given by 

1
1

1

1 if is in the source region
0 if is in the target region

i
i

i

⎧
= ⎨
⎩

X
W

X
                 (5) 

Since the similarity between the target patch and the 
candidate patch decreases from Ψq2 to ΨqN, this implies the decay 
in the confidence of these candidate patches. So proper weights are 
needed in response to the relative consequences of Xj, j=2,..,N. This is 
equivalent to choose a decreasing function of , such as ( , )a bd Ψ Ψ

( ) exp( ( , ) / )j pW d j h= −Ψ Ψ Ψ or ( ) / ( , )j p jd Ψ ΨW c . Here we 
select the latter, and let 

=Ψ

2min( ( , )) ( , )
, for 1,..., , 2,...,

( , ) ( , )
pm qj pm q

ij
pm qj pm qj

d d
i M j

d d
= = =

Ψ Ψ Ψ Ψ
W

Ψ Ψ Ψ Ψ
N=    (6) 

where the components in the same patch have the equal weights, 
and the coefficient in the numerator is introduced to scale the 
weights between 0 and 1, which will be clarified in Section 3.3. 
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3.3. EM procedure based WSNMF 
 
Now the original inpainting task has been converted into a matrix 
completion problem, which can be solved by WNMF as discussed 
in Section 2. Here additional sparseness constraint similar to [5] is 
imposed on the coefficient matrix V to enforce the sharp inpainting 
result, referred to as Weighted Sparse Non-negative Matrix 
Factorization (WSNMF), which is different from the existing 
WNMF model. The objective function to be minimized becomes 

21( , ) ( [ ] )
2WSNMF ij ij ij ij

ij ij
J λ= +∑ ∑X UV W X - UV V           (7) 

Our aim is to predict the missing values through low-rank 
matrix factorization. Recall Section 2, here we still adopt the idea 
of EM based WLRA like [6, 12, 15], which views the WLRA 
problem as a maximum-likelihood problem with missing values; 
nevertheless the specific optimization approach will be changed to 
meet the new objective function. In brief, a filled-in matrix Y is 
computed from the current model estimation at the Expectation 
step, and unweighted Sparse NMF (SNMF) is utilized on Y to re-
estimate the decomposition model at the Maximization step. The 
details are as follows. 

E-step 
The update rule is similar to [12, 15]. Formally 

( ) (M N×← ⊗ + − ⊗Y W X 1 W UV
×

)                    (8) 

where  is the matrix with all entries equaling to 1, 
and  is Hadamard multiplication. The weight matrix needs 
normalization such that all elements are in interval [0, 1]. In 
addition, the estimation of missing pixel values in Y at the initial 
iteration can simply be the means of the counterparts of the 
candidate patches. 

M
M

N
N× ∈1

⊗

M-step 
At this stage, a standard SNMF for matrix Y is required, and 

several effective SNMF algorithms have already been developed 
[5, 8]. Here we apply the SENSC algorithm proposed by Li and 
Zhang [8], considering that it obtains relatively low reconstruction 
error while preserving certain sparsity. The effectiveness of 
SENSC has been demonstrated in image clustering [10]. For 
details of this algorithm, please refer to [8]. To speed up, the 
simple trick of partial M-step which avoids determining optimal 
solutions at earlier iterations can also be adopted [6].  

As the EM iterations proceed, the current target patch Ψpm is 
recovered according to the learnt low-rank matrix. Then the 
boundary of the target region is updated, and the previous steps 
repeats until all pixels have been filled. 
 
3.4. Overall algorithm 
 
As discussed above, a pseudo-code description of the overall 
algorithm is given in Table 1. 
 

4. EXPERIMENTAL RESULTS 
 
To evaluate the proposed algorithm, experiments on a variety of 
natural images, especially the ones containing large and complex 
holes with different neighborhood topologies, have been carried 
out. We also make comparisons with previous single exemplar-
based (SE) [3, 4] and sparse representation (SR) based inpainting 
algorithms [11]. In the following experiments, the patch size is 
selected as , and the patch number N is set to 25. 9 9×
 

Table 1. Proposed inpainting algorithm. 

 
 

Input: Image I with target region Ω, source region Φ.  
Repeat until all the pixels in Ω are filled. 
1. Compute patch priority for every pixel p on the 

boundary δΩ, and select the patch with the highest 
priority as the target. 

2. Find N-1candidate patches most similar to the target 
patch, and construct the incomplete data matrix and 
corresponding weight matrix according to (3) ~ (6). 

3. Recover the incomplete data matrix using WSNMF 
proposed in Section 3.3. 

4. Copy the pixel values in the target region of selected 
patch from the recovered data matrix. 

5. Update the target region Ω and the boundary δΩ. 
Output: The inpainted image. 

Some typical results of different scenarios by our algorithm 
and other two algorithms for comparisons are shown in Fig.1 to 
Fig.3. In each figure, the first row gives the original image and the 
image to be inpainted with selected target region marked in green. 
The second row gives the inpainting results of these three 
algorithms. From left to right, are SE, SR, and our proposed 
algorithms, respectively. In Fig.1 and Fig.2, the additional third 
row shows the zoom-in details for fine comparisons. 

Fig.1 manifests that the proposed approach is capable of 
inferring both structure and texture of large missing region. The 
horizontal structures are recovered successfully, and both the 
textures of the sky and the grass are padded appropriately by our 
algorithm, whereas there are some structural artifacts produced by 
the other two algorithms. Notice that the horizontal railings in 
Fig.1 (c) and (d) are dislocated, where the parts with light color are 
intersected by the parts with deep color improperly. Conversely, 
the color transition obtained by our approach is more naturally. 

A more challenging task of composite texture inpainting is 
presented in Fig.2. From the zoom-in results in Fig.2 (c) and (d), 
we can see that there are obvious green plaques across the 
boundary between the rock and the grass layers by SE, while the 
rocks diffuse into the grass region by SR. So both algorithms have 
introduced unwanted objects due to their intrinsic greedy fashion. 
On the other side, our algorithm decreases this risk by exploiting 
the available information more fully and thus alleviates this 
negative effect. In Fig.3, this is more evidently demonstrated with 
regard to the mistakenly synthesized island region near the sea 
level by SE and SR. 
 

5. CONCLUSIONS 
 
This paper has proposed a novel algorithm for image inpainting 
based on Weighted Sparse Non-negative Matrix Factorization. The 
major contribution of this work is to cast the inpainting problem 
into the low-rank matrix recovery and completion framework. We 
no longer consider the single target patch as an incomplete signal, 
and try to fit it using the linear combination of several similar 
source patches under certain constraints as most of the existing 
techniques do; however, we integrated the target patch and the 
candidate patches as a higher level incomplete signal, and fit them 
simultaneously using the low-rank additive sparse linear 
combination of another self-adaptively constructed basis set in the 
transformed domain. Thus the information from these candidate 
patches is all combined. This approach is capable of inferring both 
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structure and composite textures of large missing region with less 
greediness to prevent unwanted artifacts because of the more 
adequate exploitation of available information from multiple 
exemplars. It also achieves sharp inpainting results due to the 
introduction of sparseness prior on the combination coefficients. In 
the future, designing more effective mechanism for determining 
the filling order and applying suitable incremental NMF procedure 
to speed up the proposed approach will be conducted. 

  
(a)                                     (b) 

   

  

(c)                                    (d)                                   (e) 
 

Fig.3. Unwanted artifact prevention: (a) Original image. (b) Target 
region is marked in green. (c), (d), and (e) Inpainting results by SE, 
SR, and proposed algorithm, respectively.  (a)                                  (b) 
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