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ABSTRACT
One-shot learning aims to recognize novel target classes from few
examples by transferring knowledge from source classes, under a
general assumption that the source and target classes are semanti-
cally related but not exactly the same. Based on this assumption,
recent work has focused on image-based one-shot learning, while
little work has addressed video-based one-shot learning. One of the
challenges lies in that it is difficult to maintain the disjoint-class
assumption for videos, since video clips of target classes may poten-
tially appear in the videos of source classes. To address this issue, we
introduce a novel setting, termed as embodied agents based one-shot
learning, which leverages synthetic videos produced in a virtual
environment to understand realistic videos of target classes. In this
setting, we further propose two types of learning tasks: embodied
one-shot video domain adaptation and embodied one-shot video
transfer recognition. These tasks serve as a testbed for evaluating
video related one-shot learning tasks. In addition, we propose a
general video segment augmentation method, which significantly
facilitates a variety of one-shot learning tasks. Experimental re-
sults validate the soundness of our setting and learning tasks, and
also show the effectiveness of our augmentation approach to video
recognition in the small-sample size regime.
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Figure 1: Comparison between the classical one-shot video
recognition setting and our novel embodied one-shot recog-
nition setting. Black symbols denote the real video data, pur-
ple symbols denote the virtual video data synthesized in
our virtual embodied environment. The first row represents
the classical one-shot setting. The second row represents
the one-shot video domain adaptation task and the third
row represents the one-shot video transfer recognition task.
(best viewed in color)
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1 INTRODUCTION
Deep learning has achieved great success in many multimedia
applications, including image object detection [17, 30, 41] and cap-
tioning [6, 50, 55]. Due to the powerful learning ability, deep archi-
tectures have been also extended to tackle tasks in more complex
video domains, such as video classification [18, 21, 26, 47]. How-
ever, a large amount of manually labeled data is required to train
these models and this may not be realistic in real-world multimedia
applications. Therefore, one-shot learning [12, 15, 40, 44, 49, 52, 53],
which aims to enable models to recognize a novel unseen concept
with only one or few examples, has attracted increasing attention.
In the widely used one-shot learning setting, we are given a source
domain and a target domain, and any data in the target domain
should not be contained in the source domain. All the labeled data
in the source domain can be used to help train a model to recognize
novel classes of the target domain.

Most of the existing work focuses on image-based one-shot
learning [7, 11, 12, 15, 49, 51]. By contrast, videos consist of temporal
sequences of frames, increasing the difficulty and complexity in
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learning representations and one-shot classifiers. To address this
issue, previous work has explored metric learning [16, 24, 33] and
meta learning [58].

One-Shot Learning Setting Revisited. In the ideal one-shot
learning setting, the target data of novel classes are supposed to be
strictly disjoint from the source data of known base classes [49].
However, videos are more complex than images, and it is common
that a video labeled as a certain action category contains some video
clips from other actions. For example, the videos of the “shooting
basketball” class are likely to contain the clips of the “running” class.
Thus, if we take the classes of “shooting basketball” and "running"
as the source and target domains, respectively, some videos of the
“running” class may appear in the source data but with different
class labels. This indicates that the source and target classes are not
disjoint in such scenarios.

Violating the disjoint-class assumption may result in some unde-
sired effects in one-shot video recognition. First, the feature repre-
sentation may not be necessarily learned to generalize to videos of
novel classes, since some videos have already existed in the source
domain. Second, it is difficult to analyze and evaluate the transfer
and generalization ability of proposed algorithms for one-shot learn-
ing tasks, since the improved performance might be contributed to
that some target videos have been seen by the model.

To address these limitations when extending one-shot image
recognition to video domains, we advocate learning from actions
of a virtual embodied agent, which is inspired by recent work on
embodied agents [1]. An embodied agent is an intelligent agent
that interacts with the environment through its body. In our video
recognition problem, we define the environment as scenarios where
humans perform actions, and the goal of the agent is to mimic hu-
man actions as real as possible. This imitation process is loosely
relevant to how humans recognize a novel action. To better under-
stand one particular novel action, humans might play that action in
the brain. Incorporating this ability to hallucinate video instances of
new actions in a virtual world might help machine vision systems
perform better one-shot learning. More importantly, by leverag-
ing the purity of synthetic videos, we mitigate the aforementioned
overlapping issue between source and target data.

Formally, we introduce a novel one-shot learning setting — em-
bodied agents based one-shot learning for video recognition. In our
setting, source data is the synthetic animations from the embodied
environment, and we take real videos as the target data. Concretely,
we propose two tasks — embodied one-shot video domain adapta-
tion and embodied one-shot video transfer recognition. The action
classes of source and target domains are the same in the former
task, but different in the latter task.

A comparison between the typical one-shot setting and our new
setting is shown in Figure 1. One merit of our setting is that it allows
to synthesize massive virtual videos effectively and efficiently. The
virtual world is mainly composed of an agent and an environment.
The agent performs specific actions repeatedly but with different
poses, changing background scenes, and various camera parameters.
This simulation runs automatically and is implemented based on a
popular game engine called Unreal Engine 4. We conduct a pilot
study in the new setting and by running our simulator, we construct
a new dataset, termed as UnrealAction, which contains 14 action
classes and each class has 100 virtual videos.

Action Label : c Action Label : c

Probe Video Gallery Video Segment Augmented Video

Figure 2: Illustration of our video segment augmentation
method. Given a probe videowith label c, we replace one seg-
ment in it with another gallery video segment to generate a
new video whose label can still be regarded as c.

In addition to the new setting and benchmark, we introduce a
novel video segment augmentationmethod that leverages the virtual
videos for one-shot video learning. Inspired by the subliminal ad-
vertising experiment [22, 34] in advertising industry, we augment
videos by replacing some short clips. This introduces some small
turbulence in learning to extract video features. In psychological
science, it is also known as Subliminal Perception [39]. Specifically,
we first collect some videos from the source domain as gallery
videos, and then we divide these gallery videos into consecutive
video segments. Given a labeled probe video, we calculate the simi-
larity between probe video segments and gallery video segments.
As demonstrated in Figure 2, by replacing one segment in a probe
video with the corresponding gallery video segment, we generate a
new video of the same label as the original probe video. In this way,
we are able to augment video instances on a large scale. One-shot
video recognition tasks are thus conducted over these augmented
videos. Extensive experiments on the UnrealAction and MiniKi-
netics datasets validate our new setting and learning tasks, and
show the effectiveness of our augmentation approach in one-shot
learning tasks.

Contributions. We summarize our contributions as follows. 1)
For the first time, the task of embodied agents based one-shot video
learning is proposed. We introduce a novel learning setting — the
Unreal environment, with a set of action scripts, virtual avatars, and
the corresponding evaluation protocol. The UnrealAction1 dataset
is publicly available. 2) We propose two novel tasks in this setting —
embodied one-shot video domain adaption and embodied one-shot
video transfer recognition, as an extension of one-shot learning
to video domains. 3) We further propose a novel video segment
augmentationmethod to address one-shot video learning. Extensive
experiments show the soundness of our learning setting and the
effectiveness of our learning algorithm.

2 RELATEDWORK
One-Shot Learning. Previous work mainly focuses on metric-
learning, meta-learning, and generative models for one-shot learn-
ing in image domains. Flagship techniques in metric-learning meth-
ods include Deep Siamese Network [25], ProtoNet [44], and Match-
ing Net [49]. Meta-learning methods [15, 40, 52–54] train a meta-
learner to optimize the parameters of recognition models. And

1http://www.sdspeople.fudan.edu.cn/fuyanwei/dataset/UnrealAction/
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generative models are complementary to these discriminative ap-
proaches [12, 27, 32, 51]. By contrast, we address one-shot learning
in video domains, a more challenging and under-explored task. The
most relevant work is Compound Memory Network (CMN) [58].
While CMN improves the network architecture for one-shot video
recognition, our method focuses on data augmentation.
Video Representation Learning. The core of video action recog-
nition is video representation learning. Conventional approaches
focus on hand-crafted representations [23, 28, 29]. Most of them de-
tect spatio-temporal interest points and then describe these points
with local representation. More recently, convolutional neural net-
works (CNNs) and recurrent neural networks (RNNs) have shown
high performance in video representation learning. Among them,
we can briefly group the model-based methods into two categories:
image-based (mainly rely on 2D ConvNets) [9, 14, 43, 57] and video-
based (mainly rely on 3D ConvNets) [2, 20, 37, 48]. And they are
not mutually exclusive. Some image-based two-stream networks
apply 3D ConvNets to fuse the spatial and flow streams [13]; some
video-based networks use 2D convolutional layers to reduce the
size of models [2, 37].

Although they have achieved very high accuracy on existing
video recognition benchmarks, these methods are still not able to
recognize a novel class with only one or few examples. In this pa-
per, we mainly address one-shot learning tasks by enabling our
model to quickly learn new concepts. In addition, data augmenta-
tion, such as random sampling, random cropping, flipping, rotation,
and semantic augmentation [8], has been used in learning video
representation. We propose a frame-level video segment augmen-
tation method, which replaces one segment in a probe video with
the most semantically similar gallery video segment. The gener-
ated video thus maintains the semantic information and temporal
consistency of the original probe video.
Learning from Virtual Data. Many attempts have been made
to train a network using data rendered from 3D models, such as
GTAV [42], flying chairs [10], UnrealCV [36], and DeepDrive [38].
We build a virtual world which is designed for generating videos
of human actions with various camera viewpoints, 3D models of
characters, agent poses, and environment. Virtual video action
recognition datasets are relatively rare and this is the first virtual
action recognition dataset to the best of our knowledge.
Embodied Agents. The concept of embodied agents is widely
used. The work of navigation learning [1] is relatively similar to
ours. They establish a benchmark which consists of scenarios from
environment datasets, such as SUNCG [45] and Matterport3D [3].
However, they mainly focus on indoor navigation, while we are in-
terested in human actions in different scenarios, including indoors,
city street, and natural scenes. The goal of a navigation agent is to
navigate to a location specified by either a coordinate, or a category
of areas, or a category of objects, while our agent aims to perform
multiple actions in different scenarios with a camera tracking it.
TRECVID Multimedia Event Detection (MED). Event detec-
tion has been studied in TRECVID MED2, which learns to assign
event labels to videos [4, 5, 19, 35, 56]. It also has the one-shot
and zero-shot settings. Note that in MED, only testing videos are
provided. That is, researchers can use any available source data to

2https://www-nlpir.nist.gov/projects/tv2018/Tasks/instance-search/

pre-train the model. Different from TRECVID MED, our newly pro-
posed setting has a fixed source domain. Hence, it is relatively easier
to evaluate and compare the transfer ability of different one-shot
video recognition models with the fixed virtual source videos.

3 TASK FORMULATION
We simulate the actions of virtual avatars in our virtual environ-
ment. The videos are then generated based on the embodied agents.

3.1 Actions of Virtual Embodied Agents
Actions from Embodied Agents. The video game industry has
developed many tools to facilitate building realistic virtual world.
We take advantage of this and choose a popular game engine, Un-
real Engine 4, to build our simulator. Unreal Engine 4 provides
Blueprint, a visual script, to control the virtual world. Our simu-
lator is mainly composed of an agent and an environment, and
the actions of the agent are recorded by virtual cameras. We use
BluePrint to define the activities of the agent, the motion of the
virtual camera, and the reaction of the environment. We collect
tens of character models as alternative appearances of our agent,
14 action classes of animations as our classification categories, and
several game maps as our environment. The 3D character models
are in different clothes, hairstyles, genders, and races. They also
have skeletons, which enable the characters to perform skeletal
animations. We make these animations compatible with all of our
character skeletons. Therefore, all the characters can perform all
the actions. The game maps include indoor scenes, urban scenes,
and natural scenes. Many of these resources can be easily accessed
in the Unreal store3, which is a market providing game developers
with needed resources. All of these resources are connected by the
BluePrint script.
Action Video Synthesis. The virtual environment allows us to
synthesize as many action videos as needed. The virtual videos are
recorded by the camera in the simulator. We implement a camera
which moves to keep track of the agent all the time in BluePrint.
To enrich the diversity of the generated data, our agent changes
its appearance by using different 3D character models and moving
from one place to another in the virtual world. The agent keeps
performing all the 14 actions continuously. We define the time for
which the agent performs all these 14 actions in sequence as a
period. The agent finds a new place in the map automatically at the
beginning of each period and starts performing at that place with a
random pose. The camera follows the agent and appears at a random
place near the agent. This process is repeated, thus generating
different video clips every time. In this way, we synthesize a large
number of virtual videos with high diversity. These synthetic videos
provide additional information to our recognition model.
Embodied Video Recognition. To facilitate the study of embod-
ied agents based one-shot learning, we release a novel dataset –
UnrealAction, which has 14 action classes, and each action class
has 100 videos from the virtual domain and 10 videos from the real-
world domain. The virtual videos consist of the actions of the agent
captured by virtual cameras in our environment. The real-world
videos are collected from social media platforms and published
datasets, such as YouTube, UCF101 [46], and Kinetics [2].
3https://www.unrealengine.com/marketplace/en-US/store
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Figure 3: Examples of our UnrealAction dataset. The left part shows the real target videos, while the right part demonstrates
the synthetic virtual videos.We generate videoswith various camera viewpoints, 3D charactermodels, agent poses, and scenes.

Essentially, our dataset performs as the playground for two tasks
defined here, namely, embodied one-shot domain adaptation and
embodied one-shot transfer recognition. These tasks use the virtual
video classes as the source domain to help classification of real-
world videos. Note that the action classes of the source and target
domains are the same in the former task, but different in the latter
task, as shown in Figure 1.

3.2 Embodied One-Shot Video Recognition
Problem Setup. The basic experimental setup is as follows. Given
a base category set Cbase and a novel category set Cnovel , we
have a base dataset Dbase = {(Vi , zi ), zi ∈ Cbase } and a novel
dataset Dnovel = {(Vi , zi ), zi ∈ Cnovel }. A recognition algorithm
is learned on Dbase and aims to generalize to the novel category
which has one or few labeled examples.

Specifically, we present two tasks of embodied one-shot video
recognition: (1) Embodied one-shot video domain adaption. For this
task, the category sets of the source domain and the target domain
remain the same, i.e., Cbase = Cnovel . We aim to learn a one-shot
classifier on the virtual source data and then generalize it to real
target data. (2) Embodied one-shot video transfer recognition. This
task is consistent with traditional one-shot learning, where the
category set of the source data is disjoint from that of the target
data, i.e., Cbase ∩ Cnovel = ∅. What distinguishes us from classic
video one-shot recognition is that our source data is virtual videos,
thus making our task more challenging.
VideoRepresentation.Generally, there are image-based and video-
based representation learning methods. (1) For image-based repre-
sentation learning methods, they simply average the image-level
features as video-level features. One advantage of image-based
based models is that they can leverage ImageNet pre-trained archi-
tectures for warm starting, which is very useful. (2) For video-based
representation learning methods, they require a significant amount
of video instances and classes to help train models [2]. And in many

cases, the pre-trained dataset may still contain the videos in the tar-
get domain. Thus, we stick to image-based representation learning
methods in our setting, and we leave video-based representation
learning methods as future work. We use fθ (.) to denote the video
representation extractor, where θ is the parameter set.
Evaluation Setup. We extend the typical N-way-k-shot setting
[40] to evaluate the performance on the novel tasks. Specifically, to
evaluate the capability of recognizing novel categories, we sample
an N-way-k-shot episode from Dnovel for testing, repeat this pro-
cess for a certain number of times, and then we average the results.
An N-way-k-shot task is derived by the following procedure: we
first randomly sample N classes from Cnovel , and then randomly
sample k labeled samples per class to construct the support set S
(|S | = N × k). An additional unlabeled example q is sampled. This
example belongs to one of the N classes and is used for testing.
One-shot Classifier. We have multiple choices of one-shot clas-
sifiers, including SVM, KNN, and ProtoNet [44]. We compare the
performance of these classifiers in the ablation study, and we adopt
ProtoNet as our one-shot classifier. ProtoNet is a metric-learning
method and uses Euclidean distance for measuring distance be-
tween video representations. For support set S in the testing episode,
S is augmented to S̃ by our segment augmentation method. Follow-
ing [44], we then calculate the prototype vector pc for each class c
in S̃ as follows:

pc =
1
|S̃c |

∑
(Vi,zi)∈S̃c

fθ (Vi). (1)

Given the query video q, its probability of belonging to class c
can be computed as:

P
(
zq = c | q

)
=

exp (∥ fθ (q) ,pc ∥)∑N
j=1 exp

(
∥ fθ (q) ,pj ∥

) , (2)

where ∥ · ∥ indicates the Euclidean distance. The class label with
the highest probability is the predicted label for the query video q.
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Figure 4: Illustration of our video segment augmentation method. lseд is set as 2. Both gallery segments and probe video seg-
ments are fed into a CNN model to get segment-level features, and Fθ (.) indicates the sequence of segment features. For each
gallery segment and probe video segments, the semantic correlation is calculated as shown in right side. A sliding window is
used to swipe gallery video segment over probe segments with stride=1 (one segment). For each window, we calculate seman-
tic distance between gallery and probe segments to obtain "semantic scores" and then a convolution operation is applied to
semantic scores which is denoted as "temporal convolutional flatting layer" to get the final scores. The gallery segment with
the smallest score will be chosen to replace the corresponding probe video segment.

4 RECOGNITION METHOD
4.1 Video Representation Learning
In all of our experiments, we use ResNet-50 as our video feature
extractor, and the features before the final layer of each frame are
averaged as video-level (segment-level) representation.

To learn a feature extractor, our method mainly contains two
stages.We denote the dataset augmented by our algorithm as D̃base
or D̃novel . We first fine-tune our video feature extractor on Dbase
and then fine-tune the network on the augmented dataset D̃base
generated by our segment augmentation method. When first fine-
tuning the network on Dbase , we expect that our model transfers
from the ImageNet domain to our source domain, which we believe
is much closer to the target domain in general. And the purpose of
fine-tuning our model on D̃base is to enforce our model to have
the ability of recognizing the augmented videos.

In the testing phase, the fine-tuned model is used as a feature
extractor for Dnovel and D̃novel . Then ProtoNet is applied to
predict action labels for query videos.

4.2 Video Segment Augmentation Method
We introduce a novel frame-level video segment augmentation
method. We randomly select 10 videos per class from the base
datasetDbase . We use these selected videos to form a gallery set G.
More concretely, the centering 16 frames of each video are sampled
as G . The same G is used for augmenting both the base dataset
Dbase and the novel dataset Dnovel .

Formally, given a probe video Vprobe and its corresponding
action label zprobe , we divide it into several continuous video seg-
ments of length lseд . This means that each segment consists of lseд
frames. We also perform the same partition for all the gallery videos.

Hence, we have |Cbase | × 10 × 16/lseд gallery segments to form
the gallery segment pool Gpool . By replacing a probe segment in
Vprobe with a gallery segment in Gpool each time, we can generate
a new video Vsyn , whose action category is still labeled as zprobe
when lseд is small.

Our video segment augmentation method is demonstrated in
Figure 4. First, both the gallery and probe video segments are fed
into fθ (.) to obtain segment-level features. As shown in Figure 4,
Fθ (.) indicates the sequence of segment features. Specifically, the
features of segments in Vprobe are formulated as

Fθ (Vprobe ) = [fθ (P1) , fθ (P2) , ..., fθ (Pm )] , (3)
wherem indicates the number of segments in Vprobe , and Pm rep-
resents the m-th segment belonging to Vprobe . After that, for each
segment Gk in Gpool , we calculate the semantic correction between
fθ (Gk ) and Fθ (Vprobe ), and the details are shown in Figure 4. Specif-
ically, given the representation of a gallery segment (the red one)
and probe segments (the orange one), we compare the Euclidean
distance between the segments of videos. This is achieved by apply-
ing a sliding window over the representations of probe segments
as in Figure 4, and computing Euclidean distance of representa-
tions between gallery and probe segments. The computed results(
yk ,1,yk ,2,yk ,3, ...,yk ,m

)
reflect the similarity between these seg-

ments.
We not only seek the semantically closest gallery video segment

for a certain probe segment, but also take temporal consistency
into consideration. Specially, we apply a convolution operation
to the semantic scores with a fixed symmetric kernel template –
[λ1, λ2, λ1]. We denote it as a “temporal convolutional flatting layer”.
The final score vector (y′k ,1,y

′
k ,2,y

′
k ,3, ...,y

′
k ,m ) thus helps maintain

the temporal consistency in the generated videos.
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We compute the score matrix between all segments of each
probe video and all gallery segments. As illustrated in Figure 4,
each probe video segment is replaced by the segment from gallery
videos with the smallest score. This generates a new video Vsyn .
In the testing phase, in order to maximize the generation of new
data, we replace each video segment and synthesize a new video
for it. For example, for a clip of 16 frames with lseд = 2, our method
generates 8 augmented videos.

To train the model on the base dataset, we replace one segment
clip every 16 frames, so that every 16-frames video clip has ex-
actly one segment replaced after being randomly cropped from the
original training video.

5 EXPERIMENTS
5.1 Datasets
UnrealAction. The details of this new dataset are described in
section 3.1. We conduct experiments on the two novel tasks on
this dataset: one is embodied one-shot video adaptation which uses
virtual videos of the 14 classes as source data and real videos of the
same 14 classes as testing data, the other one is embodied one-shot
transfer recognition, which uses the virtual data of 14 classes as
source data and real videos of other classes as testing data. In the
latter setting, the testing set of MiniKinetics is leveraged as the
target data.
MiniKinetics. Due to the lack of general benchmarks in one-shot
video action recognition, we follow the dataset processing method
proposed in [58], and we denote it as MiniKinetics. All the videos
in MiniKinetics are collected from the Kinetics dataset [2], and 100
classes are selected from the original Kinetics, with 100 videos per
class. The 100 classes are divided into 64, 12, 24 classes for training,
validation and testing, respectively. There is no intersection be-
tween the categories of these three datasets. To better evaluate our
video segment augmentation method, we also conduct experiments
on MiniKinetics and achieve the state-of-art performance.

5.2 Implementation Details
Video Processing. At the training stage, we randomly sample
continuous 16-frames clip for bothDbase or D̃base , and each frame
is randomly horizontally flipped for data augmentation. Following
the processing procedure in CMN [58], the frames are first rescaled
by resizing the shorter side to 256 and then random cropped to
a 224 × 224 region. At the testing stage, we sample the center
continuous 16-frames clip and then adopt a center crop to obtain a
224 × 224 region per frame.
Setup. Stochastic gradient descent (SGD) with momentum=0.9 is
used to fine-tune our network for 6 epochs for both of two fine-
tuning stages. The batch size is set as 6. When fine-tuning on the
initial train dataset, the learning rates of the last layer and the
other layers are set to 1 × 10−2 and 1 × 10−3, respectively. They
are divided by 10 when fine-tuning on the augmented training
dataset to prevent our network from overfitting. The kernel λ1, λ2
in the temporal convolutional flatting layer is set as 0.1 and 1.0,
respectively, and lseд is set as 2.
Evaluation. We randomly sample 20,000 episodes and calculate
mean accuracy as final results. We also apply L2 normalization to
video features before the one-shot classifier as the CMN does.

Table 1: Classification accuracy (%) of 5-way few-shot video
domain adaptation on the test set of UnrealAction.

models 1-shot 2-shot 3-shot
BaseNet+test 44.2 52.3 57.8
VirF + test 43.5 52.2 57.9

VirF + testAug 44.6 52.7 58.2
VirF + testAugD 43.2 51.6 55.9

Ours 44.8 53.2 59.0

5.3 Results on UnrealAction
We conduct experiments on two settings: embodied one-shot video
adaptation, and embodied one-shot video transfer recognition.
Baselines and Competitors. The difference between the two
tasks lies in the video class set at the testing stage. In domain
adaptation, the testing data belongs to the same class set as the
virtual source data, while in transfer recognition, the testing data
is selected from MiniKinetics. The same baselines and competitors
are used for the two tasks. We report 1-shot, 2-shot, and 3-shot
results on the 5-way setting.

(1) In the first baseline "BaseNet+ test", we use ResNet-50 pre-
trained on ImageNet as feature extractor. (2) Then we fine-tune
ImageNet pre-trained ResNet-50 on our virtual source data, and
we denote this baseline as "VirF + test". (3) For "VirF + testAug",
we explore fine-tuning our model only on Dbase and applying our
segment method in the testing stage. (4) We also adopt another
virtual dataset DeepDrive [38] as our gallery. It is a synthetic dataset
used in autonomous driving ("VirF + testAugD").
One-shot Video Domain Adaptation. The results are shown in
Table 1. The numbers are reported in percentages. We can see that
our method achieves the best performance in all the three shots
which shows that the synthetic virtual dataset helps models to learn
from the real data when they belong to the same classes. Consider
that when novel concepts only have one or few available examples,
it is difficult to find the corresponding real source data and label
them. In contrast, we can utilize our virtual embodied agents and
virtual environment to generate massive virtual videos and they
can be easily used to train the recognition models over the new
video concepts.

From the results of "VirF + testAugD", we note that the results
using this irrelevant synthetic dataset as gallery set is worse than
those with no gallery in most cases. In contrast, using our virtual
dataset as gallery videos improves the recognition results consis-
tently. This also validates the effectiveness of our augmentation
methods which replaces the probe segments with semantic corre-
lated and temporal consistent probe segments. In addition, we find
that fine-tuning our model on D̃base is also helpful in recognizing
the generated video data.

As a pilot study on UnrealAction dataset, we report the per-
class accuracy on the 5-way 1-shot setting in Figure 5. It is mean
accuracy over all the queries in testing episodes, and the numbers
are reported in percentages. The "bowing" category has the lowest
accuracy, while "holding a baby" and "samba dancing" achieve the
highest performance with 70.4% and 63.6 %, respectively.
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Table 2: Classification accuracy (%) of 5-way few-shot video
transfer recognition on the test set of MiniKinetics.

models 1-shot 2-shot 3-shot
BaseNet+test 63.5 74.4 78.6
VirF + test 54.2 65.6 69.2

VirF + testAug 56.6 65.3 68.8
VirF + testAugD 54.4 64.7 69.2

Ours 58.0 65.9 69.2

One-shot Video Transfer Recognition. The results are shown
in Tabel 2. Comparing the results of "BaseNet + test" and "VirF +
test", we can find that after fine-tuning our model on the virtual
dataset, the performance drops a lot. That is because both domain
and action categories are different in the virtual source domain and
the real target domain. In such a case, ImageNet domain is much
closer to our target video domain, which indicates that this novel
task is very challenging. Hence, algorithms that can simultaneously
reduce domain gap and learn new concepts with only one or few
examples is expected in this novel task.

Comparing our method with "VirF + test", our segment aug-
mentation method is still valid, especially in 1-shot setting. The
performance improvement is decreasing as the number of examples
increases, and a negative effect is observed in "VirF + testAug". The
performance improvement in most cases can be attributed to that,
the augmented videos help learning the prototypes of novel classes,
as a representation of these classes in metric space.

When the number of well-labeled samples in the support set
increases, they are good enough for learning the prototypes. In
such a case, additional synthetic samples do not necessarily pro-
vide additional useful information, and may introduce some noisy
information due to the augmentation process. This is especially
the case in the task of embodied transfer recognition. For "VirF
+ testAug", we only fine-tune our model on Dbase , so it does not
have the ability of recognizing augmented video data, thus leading
to the decrease in few-shot learning.

5.4 Results on MiniKinetics
Baselines and Competitors. We compare against several base-
lines and competitors as follows. (1) For the first baseline "BaseNet
+ test", we directly adopt ResNet-50 pre-trained on ImageNet as
feature extractor. (2) Second, based on the first baseline, we ap-
ply segment augmentation method to the testing phase, which we
denote as "BaseNet+testAug". (3) We use source videos Dbase to
fine-tune ResNet-50 pre-trained on ImageNet, and evaluate the
fine-tuned model on the augmented test videos ("TrainFinetuned
+ testAug"). (4) We also compare our method with the state-of-art
approaches, such as CMN [58], Matching Net [49], and MAML [15].
Matching Net is a neural architecture for image one-shot learning.
MAML is famous for its meta learning strategy. CMN is designed for
one-shot video action recognition. In CMN [58], Linchao Zhu et al.
expand Matching Net and MAML into video recognition one-shot
classifiers. Considering that our dataset and basic experimental
settings are the same as them, we quote the experimental results of
these three methods reported in CMN [58].

waving hand 

throwing 

show bicep 

saluting 

holding a baby 

clapping 

bow

chicken dance 

capoeira 

ymca dancing 

house dancing 

break dancing 

samba dancing 

jazz dancing

Figure 5: Per class accuracy (%) of our method on video do-
main adaptation task. We report the results on the 5-way-1-
shot setting.

Results. We report our results on 5-way recognition tasks with
1-shot, 2-shot, 3-shot, 4-shot, and 5-shot, respectively. The results
are shown in Table 3. We highlight several important results of
the experiments. (1) Our video segment augmentation framework
achieves the best performance on the MiniKinetics dataset. Even
when we sample only 16 frames, our framework is significantly bet-
ter than all other baselines and competitors. Our method achieves
67.8 % in the 5-way 1-shot task, improving 7.3% over CMN and 4.3
% over "BaseNet + test" baseline. And similar boost can be seen
in all shots. (2) Comparing the results of "BaseNet + testAug" and
"BaseNet + test", our video segment augmentation method boosts
the performance in 1-shot and 2-shot settings even when we only
apply it in the testing stage. And the performance drop in 3-shot,
4-shot and 5-shot settings is consistent with the results reported
on the UnrealAction dataset. (3) Comparing the results of "Train-
Finetuned + testAug" with the results of "BaseNet + testAug", it
shows a steady rise. We can draw the conclusion that when the
domain gap between the source domain and the target domain is
small, fine-tuning on source dataset helps significantly. (4) Finally,
the performance improvement from "TrainFinetuned + testAug" to
ours indicates that training on D̃base enables our model to have
the ability of recognizing synthetic videos.
Ablation Study.We first explore different one-shot classifiers and
then we conduct experiments on the number of frames. We report
our results on 5-way recognition tasks with 1-shot, 3-shot, and 5-
shot settings and all of them are performed in the way of "BaseNet
+ test". (1) As shown in Table 4, K-Nearest Neighbor (KNN), Sup-
port Vector Machine (SVM) and ProtoNet are explored. We can
see that ProtoNet outperforms SVM in 1-shot and 5-shot, and is
consistent with SVM in 3-shot. KNN is relatively poor especially
when increasing the number of examples in the support set. (2)
Each video in MiniKinetics lasts around 10 seconds and contains
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Table 3: Classification accuracy (%) of 5-way few-shot video recognition on MiniKinetics. Our video segment augmentation
method achieves the state-of-the-art results.

Model 1-shot 2-shot 3-shot 4-shot 5-shot

Baselines

BaseNet + test 63.5 74.4 78.6 80.7 82.3
BaseNet + testAug 65.6 74.5 78.0 78.8 81.5

TrainFinetuned + testAug 67.6 76.8 79.2 82.2 82.9

Competitors
Matching Net [49] 53.3 64.3 69.2 71.8 74.6

MAML [15] 54.2 65.5 70.0 72.1 75.3
CMN [58] 60.5 70.0 75.6 77.3 78.9

Ours Video Segment Augmentation Method 67.8 77.8 81.1 82.6 85.0

Table 4: Ablation study of different few-shot classifiers. Pro-
toNet outperforms KNN and SVM.

One-shot classifier 1-shot 3-shot 5-shot
KNN 63.2 72.8 76.3
SVM 63.1 78.6 80.4

ProtoNet (Ours) 63.5 78.6 82.3

Table 5: Ablation study of different frame numbers. As the
number of frames increases, the improvement of accuracy
is not significant.

Frame No. 1-shot 3-shot 5-shot
300 63.9 81.3 83.9
128 63.1 81.5 82.8
64 64.4 78.5 83.2

16 (Ours) 63.5 78.6 82.3

about 300 frames. In CMN [58], they propose a multi-saliency em-
bedding algorithm to encode all the video frames into a fixed-size
representation. In contrast, we only sample 16 frames-clip at a time
yet achieves good results. This promotes us to explore whether it
is necessary to leverage so many frames. We set the frame num-
bers as 16, 64, 128, 300 and make a comparison between them. The
results are shown in Table 5. Results show that, when we increase
the number of frames, the recognition accuracy improves steadily,
which is consistent with the empirical conclusion that more frames
introduce additional information. However, the improvement is not
that significant, but the cost of time is several times than before. Ad-
ditionally, if using all the frames of a video for training, we cannot
crop clip from video during training, and the diversity of training
data is decreased to some extent.
Visualization. To provide an intuitive sense of the capability of
our video segment augmentation method, we visualize six classes
in Figure 6. We compare our method with baselines "BaseNet+test"
and "BaseNet + testAug". They are all conducted in a 5-way 1-
shot setting. We first extract video-level features for each video in
Dnovel or D̃novel , and then we apply the t-SNE [31] algorithm to
map them into a two-dimension metric space. Figure 6 (a) shows the
distribution of Dnovel videos when ImageNet pre-trained ResNet-
50 is used as the feature extractor. The same color represents the
same action class. Figure 6 (b) is the result of applying our video

(a) BaseNet + test (b) BaseNet + testAug (c) ours

Figure 6: t-SNE visualization. Different colors represent dif-
ferent action classes. Six action classes are visualized in total.
We compare our method with baselines "BaseNet + test" and
"BaseNet + testAug".

segment augmentation method on the testing stage. We can see
that the newly generated videos are still close to the initial cluster,
which shows that our method synthesizes videos while keeping
the semantic information. Figure 6 (c) demonstrates that, after we
fine-tune our video representation learning network on Dbase
and augmented base data D̃base , the distribution of classes shifts
and the distance between inter-class increases especially when
compared to Figure 6 (a).

6 CONCLUSION
To study the one-shot learning task in video domains, We present a
novel setting— embodied one-shot video recognition, and introduce
the corresponding UnrealAction dataset as a benchmark. The source
videos of UnrealAction are created by capturing the actions of a
virtual embodied agent in a virtual environment. Our setting is
further split into domain adaptation and transfer recognition. In
addition, we introduce a novel video segment augmentationmethod
to synthesize new videos for limited datasets which performs well
in practice. Extensive experiments are conducted on UnrealAction
and MiniKinetics datasets, and we show that our method achieves
the state-of-art performance.

ACKNOWLEDGMENT
This work was supported in part by National Key Research and De-
velopment Program of China under Grant 2018YFB1004300 and Na-
tional Natural Science Foundation of China under Grant U1509206.
We would like to thank Dr. Ye Pan for his help.

Session 1D: Live Multimedia Applications & Streaming MM ’19, October 21–25, 2019, Nice, France

418



REFERENCES
[1] Peter Anderson, Angel Chang, Devendra Singh Chaplot, Alexey Dosovitskiy,

Jana Kosecka, Jitendra Malik, Roozbeh Mottaghi, Manolis Savva, and Amir R.
Zamir. 2018. On evaluation of embodied navigation agents. In ECCV.

[2] Joao Carreira and Andrew Zisserman. 2017. Quo vadis, action recognition? a
new model and the kinetics dataset. In CVPR.

[3] Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Halber, Matthias Niessner,
Manolis Savva, Shuran Song, Andy Zeng, and Yinda Zhang. 2017. Matterport3D:
Learning from RGB-D data in indoor environments. In 3DV.

[4] Xiaojun Chang, Yi Yang, Alexander G. Hauptmann, Eric P. Xing, and Yao-Liang
Yu. 2015. Semantic concept discovery for large-scale zero-shot event detection.
In IJCAI.

[5] Xiaojun Chang, Yi Yang, Guodong Long, Chengqi Zhang, and Alexander G. Haupt-
mann. 2016. Dynamic concept composition for zero-example event detection. In
AAAI.

[6] Xinlei Chen and C Lawrence Zitnick. 2015. Mind’s eye: A recurrent visual
representation for image caption generation. In CVPR.

[7] Zitian Chen, Yanwei Fu, Yu-Xiong Wang, Lin Ma, Wei Liu, and Martial Hebert.
2018. Image deformation meta-network for one-shot learning. In CVPR.

[8] Zitian Chen, Yanwei Fu, Yinda Zhang, Yu-Gang Jiang, Xiangyang Xues, and
Leonid Sigal. 2019. Multi-level semantic feature augmentation for one-shot
learning. TIP (2019).

[9] Jeffrey Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach,
Subhashini Venugopalan, Kate Saenko, and Trevor Darrell. 2015. Long-term
recurrent convolutional networks for visual recognition and description. In
CVPR.

[10] Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip Hausser, Caner Hazirbas,
Vladimir Golkov, Patrick Van Der Smagt, Daniel Cremers, and Thomas Brox.
2015. Flownet: Learning optical flow with convolutional networks. In ICCV.

[11] Li Fei-Fei, Rob Fergus, and Pietro Perona. 2003. A Bayesian approach to unsuper-
vised one-shot learning of object categories. In ICCV.

[12] Li Fei-Fei, Rob Fergus, and Pietro Perona. 2006. One-shot learning of object
categories. PAMI (2006).

[13] Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman. 2016. Convolutional
two-stream network fusion for video action recognition. In CVPR.

[14] Basura Fernando, Efstratios Gavves, Jose M Oramas, Amir Ghodrati, and Tinne
Tuytelaars. 2015. Modeling video evolution for action recognition. In CVPR.

[15] Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-agnostic meta-
learning for fast adaptation of deep networks. In ICML.

[16] Yanwei Fu, Timothy M Hospedales, Tao Xiang, and Shaogang Gong. 2014. Learn-
ing multimodal latent attributes. PAMI (2014).

[17] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. 2014. Rich
feature hierarchies for accurate object detection and semantic segmentation. In
CVPR.

[18] Amir Habibian, Thomas Mensink, and Cees Snoek. 2014. VideoStory: A new
multimedia embedding for few-example recognition and translation of events. In
ACM MM.

[19] Nakamasa Inoue, Shanshan Hao, Tatsuhiko Saito, and Koichi Shinoda. 2009. Titgt
at TRECVID 2009 workshop. In Proc. TRECvid.

[20] Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu. 2013. 3D convolutional neural
networks for human action recognition. PAMI (2013).

[21] Yu-Gang Jiang, Zuxuan Wu, Jinhui Tang, Zechao Li, Xiangyang Xue, and Shih-Fu
Chang. 2018. Modeling multimodal clues in a hybrid deep learning framework
for video classification. IEEE Transactions on Multimedia (2018).

[22] Johan C Karremans, Wolfgang Stroebe, and Jasper Claus. 2006. Beyond Vicary’s
fantasies: The impact of subliminal priming and brand choice. JESP (2006).

[23] Alexander Klaser, Marcin Marszałek, and Cordelia Schmid. 2008. A spatio-
temporal descriptor based on 3d-gradients. In BMVC.

[24] Orit Kliper-Gross, Tal Hassner, and Lior Wolf. 2011. One shot similarity metric
learning for action recognition. In International Workshop on Similarity-Based
Pattern Recognition.

[25] Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov. 2015. Siamese neural
networks for one-shot image recognition. In ICML.

[26] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifi-
cation with deep convolutional neural networks. In NeurIPS.

[27] Brenden M. Lake, Ruslan Salakhutdinov, Jason Gross, and Joshua B. Tenenbaum.
2011. One shot learning of simple visual concepts. In CogSci.

[28] Ivan Laptev. 2005. On space-time interest points. In ICCV.
[29] Ivan Laptev, Marcin Marszalek, Cordelia Schmid, and Benjamin Rozenfeld. 2008.

Learning realistic human actions from movies. In CVPR.
[30] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,

Cheng-Yang Fu, and Alexander C Berg. 2016. SSD: Single shot multibox detector.
In ECCV.

[31] Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE.
JMLR (2008).

[32] Erik G. Miller, Nicholas E. Matsakis, and Paul A. Viola. 2000. Learning from one
example through shared densities on transforms. In CVPR.

[33] Ashish Mishra, Vinay Kumar Verma, M Shiva Krishna Reddy, S Arulkumar,
Piyush Rai, and Anurag Mittal. 2018. A generative approach to zero-shot and
few-shot action recognition. InWACV.

[34] Timothy E Moore. 1982. Subliminal advertising: What you see is what you get.
Journal of marketing (1982).

[35] Paul Over, George Awad, Martial Michel, Jon Fiscus, Wessel Kraaij, and Alan F.
Smeaton. 2011. TRECVID 2011 – An overview of the goals, tasks, data, evaluation
mechanisms and metrics. In Proceedings of TRECVID 2011.

[36] Weichao Qiu and Alan Yuille. 2016. Unrealcv: Connecting computer vision to
unreal engine. In ECCV.

[37] Zhaofan Qiu, Ting Yao, and Tao Mei. 2017. Learning spatio-temporal representa-
tion with pseudo-3d residual networks. In ICCV.

[38] Craig Quiter and Maik Ernst. 2018. Deepdrive/deepdrive: 2.0.
[39] Thomas Zoëga Ramsøy and Morten Overgaard. 2004. Introspection and sublimi-

nal perception. Phenomenology and the cognitive sciences (2004).
[40] Sachin Ravi and Hugo Larochelle. 2017. Optimization as a model for few-shot

learning. In ICLR.
[41] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. 2016. You only

look once: Unified, real-time object detection. In CVPR.
[42] Stephan R Richter, Vibhav Vineet, Stefan Roth, and Vladlen Koltun. 2016. Playing

for data: Ground truth from computer games. In ECCV.
[43] Karen Simonyan and Andrew Zisserman. 2014. Two-stream convolutional net-

works for action recognition in videos. In NeurIPS.
[44] Jake Snell, Kevin Swersky, and Richard S. Zemeln. 2017. Prototypical networks

for few-shot learning. In NeurIPS.
[45] Shuran Song, Fisher Yu, Andy Zeng, Angel X. Chang, Manolis Savva, and Thomas

Funkhouser. 2017. Semantic scene completion from a single depth image. In
CVPR.

[46] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. 2012. UCF101: A
dataset of 101 human action classes from videos in the wild. CRCV (2012).

[47] Bart Thomee, David A Shamma, Gerald Friedland, Benjamin Elizalde, Karl Ni,
Douglas Poland, Damian Borth, and Li-Jia Li. 2016. The new data and new
challenges in multimedia research. Commun. ACM (2016).

[48] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar Paluri.
2015. Learning spatiotemporal features with 3D convolutional networks. In
ICCV.

[49] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Koray Kavukcuoglu, and Daan
Wierstra. 2016. Matching networks for one shot learning. In NeurIPS.

[50] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. 2015. Show
and tell: A neural image caption generator. In CVPR.

[51] Yu-Xiong Wang, Ross Girshick, Martial Hebert, and Bharath Hariharan. 2018.
Low-shot learning from imaginary data. In CVPR.

[52] Yu-Xiong Wang and Martial Hebert. 2016. Learning from small sample sets by
combining unsupervised meta-training with CNNs. In NeurIPS.

[53] Yu-Xiong Wang and Martial Hebert. 2016. Learning to learn: Model regression
networks for easy small sample learning. In ECCV.

[54] Yu-Xiong Wang, Deva Ramanan, and Martial Hebert. 2017. Learning to model
the tail. In NeurIPS.

[55] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan
Salakhudinov, Rich Zemel, and Yoshua Bengio. 2015. Show, attend and tell:
Neural image caption generation with visual attention. In ICML.

[56] Ming yu Chen, Huan Li, and Alexander Hauptmann. 2009. Informedia @
TRECVID 2009: Analyzing video motions. In Proc TRECvid.

[57] Joe Yue-Hei Ng, Matthew Hausknecht, Sudheendra Vijayanarasimhan, Oriol
Vinyals, Rajat Monga, and George Toderici. 2015. Beyond short snippets: Deep
networks for video classification. In CVPR.

[58] Linchao Zhu and Yi Yang. 2018. Compound memory networks for few-shot video
classification. In ECCV.

Session 1D: Live Multimedia Applications & Streaming MM ’19, October 21–25, 2019, Nice, France

419


	Abstract
	1 Introduction
	2 Related Work
	3 TASK FORMULATION
	3.1 Actions of Virtual Embodied Agents
	3.2 Embodied One-Shot Video Recognition

	4 Recognition Method
	4.1 Video Representation Learning
	4.2 Video Segment Augmentation Method

	5 Experiments
	5.1 Datasets
	5.2 Implementation Details
	5.3 Results on UnrealAction
	5.4 Results on MiniKinetics

	6 Conclusion
	References



