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MOTIVATION

• Intrinsic long-tailed distribution for recognition tasks in the wild

• Head-to-tail meta-knowledge transfer

– Meta-level network: Operate on the space of model parameters
– Model dynamics: Transformations from few-shot to many-shot models

• Progressive transfer

– A single, chained MetaModelNet for models of different sample sizes
– Recursive class splitting into head and tail

• An illustration: Learn both many-shot and few-shot living-room models, and train
a regressor that maps between the two
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REGRESSING k-SHOT TO MANY-SHOT MODELS

• Base learner and meta-learner

– Training set Ht of head classes: (x, y) data-label pairs for classes with more than
t training examples

– Base learner g(x; θ): Feedforward function with parameters θ
– Optimal model parameters θ∗: Tuning g on Ht with a standard loss function
– Few k-shot model parameters θ: Tuning g on random subsets of Ht with k exam-

ples per class
– MetaModelNet F(θ;w): Meta-network regressing θ to θ∗ with parameters w

• Loss function ∑
θ∈kShot(Ht)

{
||F(θ;w)− θ∗||2 + λ

∑
(x,y)∈Ht

loss
(
g
(
x;F(θ;w)

)
, y
)}

• Parameters θ and θ∗
– In principle: F(·) applies to model parameters from multiple CNN layers
– Sharable across classes: Parameters from the classifier module (last fully-

connected layer) for a single class
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[Wang & Hebert, ECCV, 2016]

REGRESSING DIFFERENT SAMPLE-SIZE FEW-SHOT TO MANY-SHOT MODELS

• Key properties

– Sample-size dependency: Generate a sequence of different meta-learners Fi each tuned for a specific k (k = 2i)

– Identity regularization: Fi → I as i→∞
– Compositionality: ∀i < j, Fi(θ) = Fj

(
Fij(θ)

)
, Fij is the regressor that maps between k(i)-shot and k(j)-shot

models

• Recursive residual network

Fi(θ) = Fi+1

(
θ + f(θ;wi)

)
• Training: Back-to-front
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• Head-tail split: Log-linear scale
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COMPARISON WITH STATE-OF-THE-ART

• Task: Scene classification on long-tailed SUN-397 with 1–1,132 images per class

• Base learner: Fine-tuning the classifier module & Freezing the representation module of a pre-trained ResNet152
CNN

• MetaModelNet: 7 residual blocks with 1,000 1-shot, 500 2-shot, and 200 4-shot till 64-shot models as inputs

• Baselines: Over-Sampling | Under-Sampling | Cost-Sensitive

• Significant improvement for few-shot tail classes
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ABLATION ANALYSIS

• Importance of sample-size dependent
transformation and identity regular-
ization

• Curriculum learning in the way of re-
cursive head-tail class splitting further
improves performance
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• Progressive learning through
joint feature fine-tuning &
model/classifier dynamics learn-
ing performs the best

• Fine-tuning the entire ResNet50

Pre-Trained Features Fine-Tuned Features
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LARGE-SCALE COMPARISONS

• Scene classification on the Places dataset:
Long-tailed version with 5–9,900 training
images per class

• Object classification on the ImageNet
dataset: Merging the 1,000 classes into the
200 higher-level classes

• Base learner: AlexNet trained from scratch
on the target tasks

• Facilitate long-tail recognition with diverse
visual concepts and distributions

Places-205 ILSVRC-2012
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UNDERSTANDING MODEL DYNAMICS

• Structure in dual model (parameter) space: Models θ ∈ R2048 as points for ResNet

• Model evolution with increasing sample sizes: Trajectories over the model space

• Class-specific data augmentation

• PCA: Approximately smooth,
nonlinear warping of model
space
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• t-SNE: Similar semantic classes
tend to be close and transform in
similar ways

CONCLUSIONS

• Long-tail recognition: Meta-knowledge transfer from data-rich head to data-poor tail classes

• Representation of model dynamics: How model evolves when gradually encountering more training examples

• Learning to learn: Regressing model parameters Progressive learning: Back-to-front residual learning
Curriculum learning: Learning from classes in the head to the body and then to the tail


