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Transferability of Supervised CNNs: Negatively atfected by the specialization
of top layer units to their original task — decouple these units from such ties

e Approach Overview: Seeking low-density separators (LDS) while identitying
high-density quasi-classes (HDQC)

Single-Scale Layer-Wise Training: Break the LDS units into blocks to prevent co-adaptation & enforce diversity
Multi-Scale Structure: Modification of multi-scale DAG-CNN architecture [Yang and Ramanan]

SS-LDS+CNN: LDS with 2,000 blocks of 10 units in activation space of fc7 for AlexNet & VGG19

MS-LDS+CNN: LDS in Conv3, Conv4, Conv5, fc6, fc7 for AlexNet & in Conv43, Convd4, Convb1l, Convb2, fc6 tor VGG19

Unsupervised Meta-Training: Original tiny sampling biased to a selection of

categories — a massive set of unlabeled images as a much less biased sampling find W € LD5, T € HDQC

subject to W separate T

More Generic, Richer Description: Diverse sets of separations discriminating

the data manifold from its surroundings in all non-manifold directions [Bengio] Softmax

Layer K T

— Unlabeled Data Corpus: Yahoo/Flickr 100-million
— Feature Space: Activation space of layer £ of a pre-trained ImageNet CNN

[Output Layer][ Output Layer][ Output Layer]*

Structure/Manifold Assumption: Encourage multiple top layer units to gen-
erate low-density separators that do not cross high-density regions

£ ReLU —> Avg-pool —>{ LDS > FCa —> FCb > Add
T T [LDS %ayer] T

[Layer K ] [LDS Layer ] i LDS \ Conv
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— Unsupervised Margin Maximization: A vector of weights <> a separator or
decision boundary in the activation space
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Novel Category Recognition
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quasi-classes

Unsupervised data

QUASI-CLASSES VISUALIZATION LEARNING FROM FEW EXAMPLES

e Learning Low-Density Separators: Generalization of supervised predictable
discriminative binary codes [Rastegari et al.]
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o Target Tasks: Novel category recognition for scene classification | fine-grained recognition | action recognition
e Evaluation: VGG19 LDS+CNN & CNN as off-the-shelf features | influence of number of training examples per category
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e Generating High-Density Quasi-Classes: A coarse-to-fine procedure that
combines max-min sampling [Dai and Van Gool] and bootstrap learning [Choi et

al.] N
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e Comparison to weakly-supervised CNNSs [Joulin et al.] e Fine-tuning (AlexINet)

CONCLUSIONS AND FUTURE WORK
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Type Approach

e Structure learning in a large set of unlabeled real-world images to improve the
overall transferability of supervised CNNs

e Combination of supervised and unsupervised learning to facilitate the recog-
nition of novel categories from few examples

o Integration into the current CNN backpropagation framework both learning
low-density separators and gradually estimating high-density quasi-classes

N
s.t. 70 SZTC’i < T,VCE {1,...

1=1

,C}

T..; = 1if image 7, is selected for assignment to quasi-class c and zero otherW1se
I; = 0 if Z; is not selected for assignment to any quasi-class (i.e., S5 = 0)
and one otherwise

o7 = f (w*" x;), f(-) is a non-linear function (e.g., ReLU)
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