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MOTIVATION

• Transferability of Supervised CNNs: Negatively affected by the specialization
of top layer units to their original task→ decouple these units from such ties

• Unsupervised Meta-Training: Original tiny sampling biased to a selection of
categories→ a massive set of unlabeled images as a much less biased sampling

• More Generic, Richer Description: Diverse sets of separations discriminating
the data manifold from its surroundings in all non-manifold directions [Bengio]

• Structure/Manifold Assumption: Encourage multiple top layer units to gen-
erate low-density separators that do not cross high-density regions

1.2	  M	   100	  M	  

Supervised Pre-Training 
of Bottom and Middle Layers

Unsupervised Meta-Training 
of Top Layers

Novel Category Recognition
from Few Examples

è	   è	  

QUASI-CLASSES VISUALIZATION

CONCLUSIONS AND FUTURE WORK

• Structure learning in a large set of unlabeled real-world images to improve the
overall transferability of supervised CNNs

• Combination of supervised and unsupervised learning to facilitate the recog-
nition of novel categories from few examples

• Integration into the current CNN backpropagation framework both learning
low-density separators and gradually estimating high-density quasi-classes

UNSUPERVISED META-TRAINING OF LOW-DENSITY SEPARATORS

• Approach Overview: Seeking low-density separators (LDS) while identifying
high-density quasi-classes (HDQC)

find W ∈ LDS, T ∈ HDQC

subject to W separate T

– Unlabeled Data Corpus: Yahoo/Flickr 100-million
– Feature Space: Activation space of layer k of a pre-trained ImageNet CNN
– Unsupervised Margin Maximization: A vector of weights↔ a separator or

decision boundary in the activation space
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• Learning Low-Density Separators: Generalization of supervised predictable
discriminative binary codes [Rastegari et al.]
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• Generating High-Density Quasi-Classes: A coarse-to-fine procedure that
combines max-min sampling [Dai and Van Gool] and bootstrap learning [Choi et
al.]
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, f(·) is a non-linear function (e.g., ReLU)

LOW-DENSITY SEPARATOR NETWORKS

• Single-Scale Layer-Wise Training: Break the LDS units into blocks to prevent co-adaptation & enforce diversity
• Multi-Scale Structure: Modification of multi-scale DAG-CNN architecture [Yang and Ramanan]

• SS-LDS+CNN: LDS with 2,000 blocks of 10 units in activation space of fc7 for AlexNet & VGG19

• MS-LDS+CNN: LDS in Conv3, Conv4, Conv5, fc6, fc7 for AlexNet & in Conv43, Conv44, Conv51, Conv52, fc6 for VGG19
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LEARNING FROM FEW EXAMPLES

• Target Tasks: Novel category recognition for scene classification | fine-grained recognition | action recognition
• Evaluation: VGG19 LDS+CNN & CNN as off-the-shelf features | influence of number of training examples per category
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LEARNING IN THE MODERATE NUMBER OF EXAMPLES REGIME

• Comparison to weakly-supervised CNNs [Joulin et al.]

Type Approach SUN-397 MIT-67 102 Flowers Stanford-40

Weakly-supervised
CNNs

Flickr-AlexNet 42.7 55.8 74.2 53.0
Flickr-GoogLeNet 44.4 55.6 65.8 52.8
Combined-AlexNet 47.3 58.8 83.3 56.4
Combined-GoogLeNet 55.0 67.9 83.7 69.2

Ours SS-LDS+CNN 55.4 73.6 87.5 70.5
MS-LDS+CNN 59.9 80.2 95.4 72.6

• Fine-tuning (AlexNet)
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