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MOTIVATION

• Problem statement: under-explored few-shot object detection

– Task: learn a detector for novel classes with few labeled bounding box examples
– Challenge: classify + localize multiple objects + tackle distracting background

• Key insight: base-to-novel meta-knowledge transfer

– Meta-level network: operate on the space of model parameters
– Model dynamics: transform few-shot to large-sample detection models
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• Our approach: meta-learning based object detection

– A unified framework: jointly address few-shot classification and localization
– A general framework: apply to region-based and proposal-free detectors
– An effective framework: deal with different notions of novel classes

DISENTANGLING THE LEARNING OF DIFFERENT COMPONENTS
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• Category-agnostic components: parameters shared by base and novel classes

• Category-specific components: dynamics of parameters shared by base and novel

META-LEARNING BASED OBJECT DETECTION

• Meta-learning procedure
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WITHIN-DOMAIN FEW-SHOT DETECTION

• PASCAL VOC benchmark: 15 base ! 5 novel classes

– Detector: Faster R-CNN pre-trained on ImageNet
– Novelness: have seen global image-level labels of

novel classes

• MS-COCO benchmark: 60 base ! 20 novel classes

– Detector: Faster R-CNN trained from scratch
– Novelness: have seen novel classes as background

without any labels
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• Apply to both Faster R-CNN and YOLO | meta-learned two-stage networks generalize better

CROSS-DOMAIN GENERALIZATION

• COCO ! PASCAL

– Setting: 60 COCO classes as base !
20 PASCAL classes as novel

• COCO ! ImageNet

– Setting: 80 COCO classes as base !
50 ImageNet2015 classes as novel
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• Detector: Faster R-CNN trained on COCO from scratch

• Novelness: have never before seen novel classes

• Consistently outperform all baselines by large margins for different shots

• Comparison with within-domain results: importance of overcoming domain shift

ABLATION STUDIES

• Input to T : few-shot classification vs. detection • Structure of T : robust to specific implementations

• Meta-strategies: category-specific vs. category-agnostic bounding box regression

Meta-model w/ cls cls, loc-agn loc cls+loc
k = 3 27.0 27.5 28.0 29.1
k = 10 44.2 44.6 44.9 45.6

Meta-model w/ 1-layer 2-layer 3-layer 4-layer
k = 3 27.8 28.6 29.1 28.4
k = 10 44.5 45.0 45.6 44.9

LONG-TAIL DETECTION

• Benchmark: iNaturalist with 2,854 fine-grained species

• Setting: data-rich head classes as base ! data-poor tail classes as novel

• Detector: Faster R-CNN pre-trained on ImageNet

• Novelness: have seen coarse concepts & never before seen fine-grained concepts
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• Significantly improve tail performance while remaining accurate on head

CONCLUSION

• Meta-knowledge: category-shared parameters or parameter dynamics in detectors

• Simultaneously tackle few-shot classification and localization in a coherent way

• Generality: apply to different types of detectors & a variety of realistic settings


