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e Problem statement: under-explored tew-shot object detection

— Task: learn a detector for novel classes with few labeled bounding box examples

— Challenge: classity + localize multiple objects + tackle distracting background
e Key insight: base-to-novel meta-knowledge transfer

— Meta-level network: operate on the space of model parameters

— Model dynamics: transform few-shot to large-sample detection models
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¢ Our approach: meta-learning based object detection

— A unified framework: jointly address few-shot classification and localization
— A general framework: apply to region-based and proposal-free detectors

— An effective framework: deal with different notions of novel classes

DISENTANGLING THE LEARNING OF DIFFERENT COMPONENTS

e Extension of shared model dy-
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ConvNet Feature map

o Category-agnostic components: parameters shared by base and novel classes

e Category-specific components: dynamics of parameters shared by base and novel
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META-LEARNING BASED OBJECT DETECTION

¢ Meta-learning procedure
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Meta-training on base classes Meta-testing on novel classes

o Category-specific parameters w§ . = (w5, wy,.| for each class c in detection network D
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WITHIN-DOMAIN FEW-SHOT DETECTION

e PASCAL VOC benchmark: 15 base — 5 novel classes e MS-COCO benchmark: 60 base — 20 novel classes

— Detector: Faster R-CNN pre-trained on ImageNet — Detector: Faster R-CNN trained from scratch

— Novelness: have seen global image-level labels of
novel classes

— Novelness: have seen novel classes as background

without any labels
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o Apply to both Faster R-CNN and YOLO | meta-learned two-stage networks generalize better
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ABLATION STUDIES

e Input to 7: few-shot classification vs. detection e Structure of 7: robust to specific implementations

e Meta-strategies: category-specific vs. category-agnostic bounding box regression

Meta-model w/  cls cls,loccagn  loc  cls+loc Meta-model w/  1-layer 2-layer 3-layer 4-layer
k=23 27.0 27.5 28.0 29.1 k=3 27.8 28.6 29.1 28.4
k=10 44.2 44.6 449 45.6 k=10 44.5 45.0 45.6 44.9
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CROSS-DOMAIN GENERALIZATION

o COCO — PASCAL e COCO — ImageNet

— Setting: 60 COCO classes as base —
20 PASCAL classes as novel

— Setting: 80 COCO classes as base —
50 ImageNet2015 classes as novel
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Detector: Faster R-CNN trained on COCO from scratch
Novelness: have never before seen novel classes
Consistently outperform all baselines by large margins for different shots

Comparison with within-domain results: importance of overcoming domain shift

LONG-TAIL DETECTION

Benchmark: iNaturalist with 2,854 fine-grained species
Setting: data-rich head classes as base — data-poor tail classes as novel
Detector: Faster R-CNN pre-trained on ImageNet

Novelness: have seen coarse concepts & never betore seen fine-grained concepts
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Significantly improve tail performance while remaining accurate on head

CONCLUSION

Meta-knowledge: category-shared parameters or parameter dynamics in detectors
Simultaneously tackle few-shot classification and localization in a coherent way

Generality: apply to different types of detectors & a variety of realistic settings




