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Problem statement: few-shot 3D human motion prediction
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Key insight: good generalization from few examples relies on

— A generic initial model
— An effective strategy for adapting this model to novel tasks

Our approach: proactive and adaptive meta-learning (PAML)

— Model-agnostic meta-learning: generic initialization through meta-learning [1]

— Model regression network: learning-to-learn transtormation from few-shot to
many-shot models [2]

— Novel combination: an integrated, end-to-end framework

. Finn, et al. Model-agnostic meta-learning for fast adaptation of deep networks. ICML, 2017.

. Wang and Hebert. Learning to learn: model regression networks for easy small sample
learning. ECCYV, 2016.

META-LEARNING FOR HUMAN MOTION PREDICTION

Motion predictor Py (i.e., learner): historical sequence X — future sequence Y
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Setup: learn from a meta-set—a collection of k-shot prediction tasks 7

Meta-training: train Py on small Sy = {(X,Y9")} that achieves high perfor-
mance on Stest fOr different prediction tasks on Dyyeta-train 0f kniown action classes

Meta-testing: adapt Py to solve prediction tasks on Dyeta-test Of 110vel action classes
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PROACTIVE META-LEARNER: GENERIC MODEL INITIALIZATION FEW-SHOT MOTION PREDICTION ON HUMAN 3.6 M

Model-agnostic meta-learning (MAML): meta-learn a universal predictor under plain SGD updates [1] e Top to bottom: groundtruth | multi-

task | ours (smoother & more realistic)
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e Significant improvements on novel ac-
tions for 5-shot prediction

— meta-learning
9 ---- |learning/adaptation

Model adaptation to task 7; on Syin: 0; = 0 — aVe LT, (Py)
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Meta-objective: maximal performance on Sy 0f task 7;
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Meta-optimization: a general-purpose initial § across tasks: 6 <— 0 — V4 > L7, (Po:)

ADAPTIVE META-LEARNER: MODEL ADAPTATION STRATEGY
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Eating Discussion

Model regression network (MRN): guide model adaptation through meta-learning [2]

— Key insight: a generic non-linear transtormation ‘H from few-shot

to many-shot model parameters ABLATION ANALYSIS AND SANITY CHECK

e Complementary components: model e Improvements with more training se-
initialization vs. adaptation quences: close to the oracle --Oracle

~Fine-tuning
| Smoklng ~ Discussion ~PAML
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— Extension of tasks: original image classification — our motion prediction

— Data: explicitly leverage the original large training sets of known action classes
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Estimation of H, as a regression function during meta- 1.2
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error e Sanity check: effectiveness for classifi-
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cation on mini-ImageNet
0.2 5-Way Accurac
Method 1-shot : g—shot
0 Matching Networks 43.56% £ 0.84% | 55.31% £+ 0.73%

80ms 160ms 320ms 400ms 560ms 1000ms MAML 48.70% + 1.84% | 63.11% £ 0.92%
Meta-Learner LSTM 43.44% + 0.77% 60.60% + 0.71%

. Prototypical Networks || 46.61% £ 0.78% | 65.77% £ 0.70%
Eatlng Meta Networks 49.21% 4+ 0.96% ——
PAML (Ours) 53.26% + 0.52% | 68.19% + 0.61%

— 0?: learned on Siain by using SGD

— 07: learned on a large set of annotated sequences

AN INTEGRATED, END-TO-END FRAMEWORK

Integrated model adaptation during meta-training & meta-testing: 0, = H, (0 — aVoL7, (Pp))

Integrated meta-objective during meta-training

mmZET Py) = HZET (Po:) + = )\HH’ 0% || CONCLUSIONS AND APPLICATIONS

e Extension of few-shot learning in a broader context: image classification — mo-
tion prediction (imitation)
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e Meta-learning: jointly learn generic model initialization & etfective adaptation
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e Real-world scenario: learn in an online, streaming manner with limited training data

Test Sequence X e. g human—robot interaction and Collaboratlon
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