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MOTIVATION

• Problem statement: few-shot 3D human motion prediction
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• Key insight: good generalization from few examples relies on

– A generic initial model
– An effective strategy for adapting this model to novel tasks

• Our approach: proactive and adaptive meta-learning (PAML)

– Model-agnostic meta-learning: generic initialization through meta-learning [1]
– Model regression network: learning-to-learn transformation from few-shot to

many-shot models [2]
– Novel combination: an integrated, end-to-end framework

1. Finn, et al. Model-agnostic meta-learning for fast adaptation of deep networks. ICML, 2017.
2. Wang and Hebert. Learning to learn: model regression networks for easy small sample

learning. ECCV, 2016.

META-LEARNING FOR HUMAN MOTION PREDICTION

• Motion predictor Pθ (i.e., learner): historical sequence X→ future sequence Ŷ
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• Setup: learn from a meta-set—a collection of k-shot prediction tasks T

• Meta-training: train Pθ on small Strain = {(X,Ygt)} that achieves high perfor-
mance on Stest for different prediction tasks on Dmeta-train of known action classes

• Meta-testing: adapt Pθ to solve prediction tasks on Dmeta-test of novel action classes
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PROACTIVE META-LEARNER: GENERIC MODEL INITIALIZATION

• Model-agnostic meta-learning (MAML): meta-learn a universal predictor under plain SGD updates [1]

• Model adaptation to task Ti on Strain: θ′i = θ − α∇θLTi (Pθ)

• Meta-objective: maximal performance on Stest of task Ti

min
θ

∑
Ti

LTi
(
Pθ′i
)
= min

θ

∑
Ti

LTi
(
Pθ−α∇θLTi (Pθ)

)
• Meta-optimization: a general-purpose initial θ across tasks: θ ← θ − β∇θ
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ADAPTIVE META-LEARNER: MODEL ADAPTATION STRATEGY

• Model regression network (MRN): guide model adaptation through meta-learning [2]

– Key insight: a generic non-linear transformationH from few-shot
to many-shot model parameters

– Extension of tasks: original image classification→ our motion prediction

– Data: explicitly leverage the original large training sets of known action classes

• Estimation ofHφ as a regression function during meta-training: minφ
∑
Ti

∥∥Hφ (θ0i )− θ∗i ∥∥22
– θ0i : learned on Strain by using SGD

– θ∗i : learned on a large set of annotated sequences
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FEW-SHOT MOTION PREDICTION ON HUMAN 3.6M

• Significant improvements on novel ac-
tions for 5-shot prediction

• Top to bottom: groundtruth | multi-
task | ours (smoother & more realistic)
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ABLATION ANALYSIS AND SANITY CHECK

• Complementary components: model
initialization vs. adaptation
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• Improvements with more training se-
quences: close to the oracle
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• Sanity check: effectiveness for classifi-
cation on mini-ImageNet

Method 5-Way Accuracy
1-shot 5-shot

Matching Networks 43.56%± 0.84% 55.31%± 0.73%
MAML 48.70%± 1.84% 63.11%± 0.92%

Meta-Learner LSTM 43.44%± 0.77% 60.60%± 0.71%
Prototypical Networks 46.61%± 0.78% 65.77%± 0.70%

Meta Networks 49.21%± 0.96% −−
PAML (Ours) 53.26%± 0.52% 68.19%± 0.61%
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CONCLUSIONS AND APPLICATIONS

• Extension of few-shot learning in a broader context: image classification → mo-
tion prediction (imitation)

• Meta-learning: jointly learn generic model initialization & effective adaptation

• Real-world scenario: learn in an online, streaming manner with limited training data
e.g., human-robot interaction and collaboration

AN INTEGRATED, END-TO-END FRAMEWORK

• Integrated model adaptation during meta-training & meta-testing: θ′i = Hφ (θ − α∇θLTi (Pθ))

• Integrated meta-objective during meta-training

min
θ,φ

∑
Ti

L̃Ti
(
Pθ′i
)
= min

θ,φ

∑
Ti

LTi
(
Pθ′i
)
+
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λ ‖θ′i − θ∗i ‖
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