

MOTIVATION

• **Problem statement:** human-like 3D motion prediction

Input Sequence **X**

Prediction Sequence $\widehat{\mathbf{X}}$

- Limitation of SOTA encoder-decoder predictor: discontinuity & unrealism
- **Key insight:** leverage structure of motion sequence
- Local frame-wise geometric structure
- *Global* sequence-level fidelity and continuity
- **Our approach:** adversarial geometry-aware encoder-decoder (AGED) model
- Geometric structure aware loss for 3D motion: Euclidean \rightarrow geodesic loss
- Adversarial training for validating prediction: two global, complementary re*current* discriminators

GEOMETRY-AWARE ENCODER-DECODER PREDICTOR

• **Predictor** \mathcal{P} : sequence-to-sequence recurrent encoder-decoder network

- **Geodesic loss:** regress prediction $\widehat{\mathbf{X}}$ to groundtruth sequence \mathbf{X}_{gt} frame by frame
- Motion frame: 3D rotations of all joint angles
- **3D rotation matrices R:** Special Orthogonal Group SO(3) with a Riemannian *manifold* structure
- Geodesic distance on the manifold: angle between two rotation matrices

$$\mathbf{d}_{G}\left(\widehat{\mathbf{R}}_{j}^{k}, \mathbf{R}_{j}^{k}\right) = \left\|\log\left(\widehat{\mathbf{R}}_{j}^{k} \mathbf{R}_{j}^{k^{T}}\right)\right\|_{2}, \mathcal{L}_{\text{geo}}\left(\mathcal{P}\right) = \sum_{j} \sum_{k} \mathbf{d}_{G}\left(\widehat{\mathbf{R}}_{j}^{k}, \mathbf{R}_{j}^{k}\right) \quad j\text{-th}$$

$$\frac{\mathbf{d}_{G}(\widehat{\mathbf{R}}_{j}^{k}, \mathbf{R}_{j}^{k})}{\mathbf{d}_{E}(\widehat{\theta}_{j}^{k}, \theta_{j}^{k})}$$
$$\widehat{\theta}_{j}^{k}/\widehat{\mathbf{R}}_{j}^{k}/\widehat{\mathbf{R}}_{j}^{k}/\theta_{j}^{k}/$$

ADVERSARIAL GEOMETRY-AWARE HUMAN MOTION PREDICTION

José M. F. Moura Yu-Xiong Wang* Liang-Yan Gui* Xiaodan Liang Email: {lgui, yuxiongw, xiaodan1, moura}@andrew.cmu.edu

FIDELITY AND CONTINUITY DISCRIMINATORS

• Adversarial training: predictor as a generator & two sequence-level *recurrent* discriminators

• An unconditional, fidelity discriminator \mathcal{D}_f

- Examine the sequence-level plausibility of prediction
- Distinguish between "short" sequences $\widehat{\mathbf{X}}$ & \mathbf{X}_{gt}

 $\mathcal{L}_{\text{adv}}^{f}\left(\mathcal{P}, \mathcal{D}_{f}\right) = \mathbb{E}\left[\log\left(\mathcal{D}_{f}(\mathbf{X}_{\text{gt}})\right)\right] + \mathbb{E}\left[\log\left(1 - \mathcal{D}_{f}(\mathcal{P}\left(\mathbf{X}\right))\right)\right]$

• A conditional, continuity discriminator \mathcal{D}_c

- Check the coherence of prediction with the input sequence
- Distinguish between "long" concatenated sequences $\{\mathbf{X}, \widehat{\mathbf{X}}\} \& \{\mathbf{X}, \mathbf{X}_{gt}\}$

 $\mathcal{L}_{\text{adv}}^{c}\left(\mathcal{P}, \mathcal{D}_{c}\right) = \mathbb{E}\left[\log\left(\mathcal{D}_{c}(\{\mathbf{X}, \mathbf{X}_{\text{gt}}\})\right) + \mathbb{E}\left[\log\left(1 - \mathcal{D}_{c}(\{\mathbf{X}, \mathcal{P}(\mathbf{X})\})\right)\right]$

Adversarial Geometry-Aware Encoder-Decoder Model

• Joint minimax optimization and adversarial training

– Integration of geodesic (regression) loss and two adversarial losses

 $\mathcal{P}^{*} = \arg\min_{\mathcal{P}} \max_{\mathcal{D}_{f}, \mathcal{D}_{c}} \lambda \left(\mathcal{L}_{adv}^{f} \left(\mathcal{P}, \mathcal{D}_{f} \right) + \mathcal{L}_{adv}^{c} \left(\mathcal{P}, \mathcal{D}_{c} \right) \right) + \mathcal{L}_{geo} \left(\mathcal{P} \right)$

HUMAN EVALUATION AND USER STUDIES

• A/B testing and success rates: 25 judges | choose more realistic ones from random pairs of videos

	Sh	ort-term		Long-term								
O_{11} rs	Groundtruth	Sampling-based	Residual	Ours	Groundtruth	Sampling-based	Residual					
Ouis	Giounatium	loss	sup.	Ours	Giounatium	loss	sup.					
n/a	53.3%	98.6%	69.6%	n/a	48.7%	83.5%	93.1%					
46.7%	n/a	99.7%	75.7%	51.3%	n/a	83.7%	94.9%					
	Ours n/a 46.7%	Ours Groundtruth n/a 53.3% 46.7% n/a	Ours Groundtruth Sampling-based loss n/a 53.3% 98.6% 46.7% n/a 99.7%	Short-term Ours Groundtruth Sampling-based Residual 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 100000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 <tr< td=""><td>Simpling-based Residual Ours Sampling-based Residual Ours n/a 53.3% 98.6% 69.6% n/a 46.7\% n/a 99.7% 75.7% 51.3%</td><td>Ours Groundtruth Sampling-based loss Residual sup. Ours Groundtruth Groundtruth n/a 53.3% 98.6% 69.6% n/a 48.7% 46.7\% n/a 99.7% 75.7% 51.3% n/a</td><td>$\begin{array}{c c c c c c } \hline &$</td></tr<>	Simpling-based Residual Ours Sampling-based Residual Ours n/a 53.3% 98.6% 69.6% n/a 46.7\% n/a 99.7% 75.7% 51.3%	Ours Groundtruth Sampling-based loss Residual sup. Ours Groundtruth Groundtruth n/a 53.3% 98.6% 69.6% n/a 48.7% 46.7\% n/a 99.7% 75.7% 51.3% n/a	$ \begin{array}{c c c c c c } \hline & & & & & & & & & & & & & & & & & & $					

Time

$$\sqrt{\frac{\theta_j^k}{\mathbf{R}}}$$

th frame, *k*-th joint

Recurrent discriminator architecture

• Comparison to prior work

- Representative short-term results of mean angle error for walking
- Consistently outperform deep baselines in all the scenarios

Top to bottom rows: groundtruth | sampling-based loss | residuls sup. | ours **Rectangles:** Red-jump | Black-drift away to unrealistic motion | Blue-converge to mean pose

- motion frames

QUANTITATIVE EVALUATION ON H3.6M

- Unpacking the performance gain
- Zero-velocity baseline: general difficulty of motion modeling

- Geodesic loss is superior to Euclidean loss
- Two discriminators are complementary to each other
- Full model achieves the best performance

QUALITATIVE VISUALIZATION

01	ng	5-t	er	m	pı	reo	die	cti	or	IS:	n	10]	re	re	eal	ist	cic	, C	on	ti	nu	.01	1S,		nc	łŀ	<u>u</u>	ma	an	-li	ke
A.	A	A		A	-	\$	A	A	Â	Â	Â,	A	₹Ţ	<pre>A</pre>	Ŕ	< A	< A	A	\$	T	E.	<pre>S</pre>		X	<pre> </pre>	S	X			×	
Res and a second	A	A l	A	A	×	A	£	A.	t i	j J	\$ }	XXX	N K	ý (ř	X X								x X	$\tilde{\langle}$			\mathcal{K}			Z j	
A A	A	A l	<pre>A</pre>	A A	A A	Ky -	Xy	Xy	J.	The second secon	Ky .	Ky .	X.	Ky I	X X	À.	À.	X-	À.	À.	À.	À.	X.	À.	X-	À	À	À	À	Å	À.
×	×	A	A.	A.	A	A	A	A	A	A	A.	\$	A	A	A	\$	A.	¥.	J.	R.	R.	K	R.	K	J.	A.	A.	A.	À	<u>}</u>	Â,
														>																	
K	Ŕ	A	Ŕ	Ŕ	K	A	Ŕ	Ŕ	R	Ŕ		visc	uss	sio č	n	Â	Ŷ	Ň	Å	Å	Å	Ā	₫.	Á.	A.	Æ.	4	Æ.	Á.	Ĩ.	, A

CONCLUSIONS

• Geodesic loss: geometrically meaningful, more precise distance measurement for

• Recurrent discriminators: adversarial learning for motion prediction and synthesis

• **Potential applications** in other motion modeling and analysis tasks