Carnegle ADVERSARIAL GEOMETRY-AWARE HUMAN MOTION PREDICTION

' Mellon i3 ECCV 2018

Liang-Yan Gui* Yu-Xiong Wang* Xiaodan Liang José M. E. Moura Eur“op[wjean Confe\r‘/t.an.ce
Email: {lgui, yuxiongw, xiaodanl, mouraj@andrew.cmu.edu on Computer Vision

MOTIVATION FIDELITY AND CONTINUITY DISCRIMINATORS QUANTITATIVE EVALUATION ON H3.6 M

Problem statement: human-like 3D motion prediction o Adversarial training: predictor as a generator & two sequence-level recurrent discriminators e Comparison to prior work e Unpacking the performance gain
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— Distinguish between “short” sequences X & Xt

Limitation of SOTA encoder-decoder predictor: discontinuity & unrealism
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Key insight: leverage structure of motion sequence
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Our approach: adversarial geometry-aware encoder-decoder (AGED) model o = LSTM-31R alevc |V
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— Geometric structure aware loss for 3D motion: Fuclidean — geodesic loss
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— Adversarial training for validating prediction: two global, complementary re-

current discriminators
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GEOMETRY-AWARE ENCODER-DECODER PREDICTOR

Continuity
Predictor P: sequence-to-sequence recurrent encoder-decoder network : Discriminator

 Predictor Prediction

G- —*’ Encoder [ Decoder -—>W§<§

Encoder - , . Conditioning L ___________________ j Geodesw , Flc.lel.lty —> Real or

Discriminator fake? SR |
motion Discriminator |

roundtruth

[OREAGOR T G i—»msw 449844

'| Linear Linear [inear i

¢ Joint minimax optimization and adversarial training

Representation
— Integration of geodesic (regression) loss and two adversarial losses

e Geodesic loss: regress prediction X to groundtruth sequence X, frame by frame P* — arg min max \ ( ol
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— Motion frame: 3D rotations of all joint angleS Rectangles: Red-jump | Black-drift away to unrealistic motion | Blue-converge to mean pose

— 3D rotation matrices R: Special Orthogonal Group SO(3)
with a Riemannian manifold structure

HUMAN EVALUATION AND USER STUDIES

CONCLUSIONS
— Geodesic distance on the manifold: . o A/B testing and success rates: 25 judges | choose more realistic ones from random pairs of videos
/R IR e Geodesic loss: geometrically meaningtul, more precise distance measurement for
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Groundtruth vs. | 46. n/a 09.7% 75.7% | n/a 33.7% 04.9% o Potential applications in other motion modeling and analysis tasks




