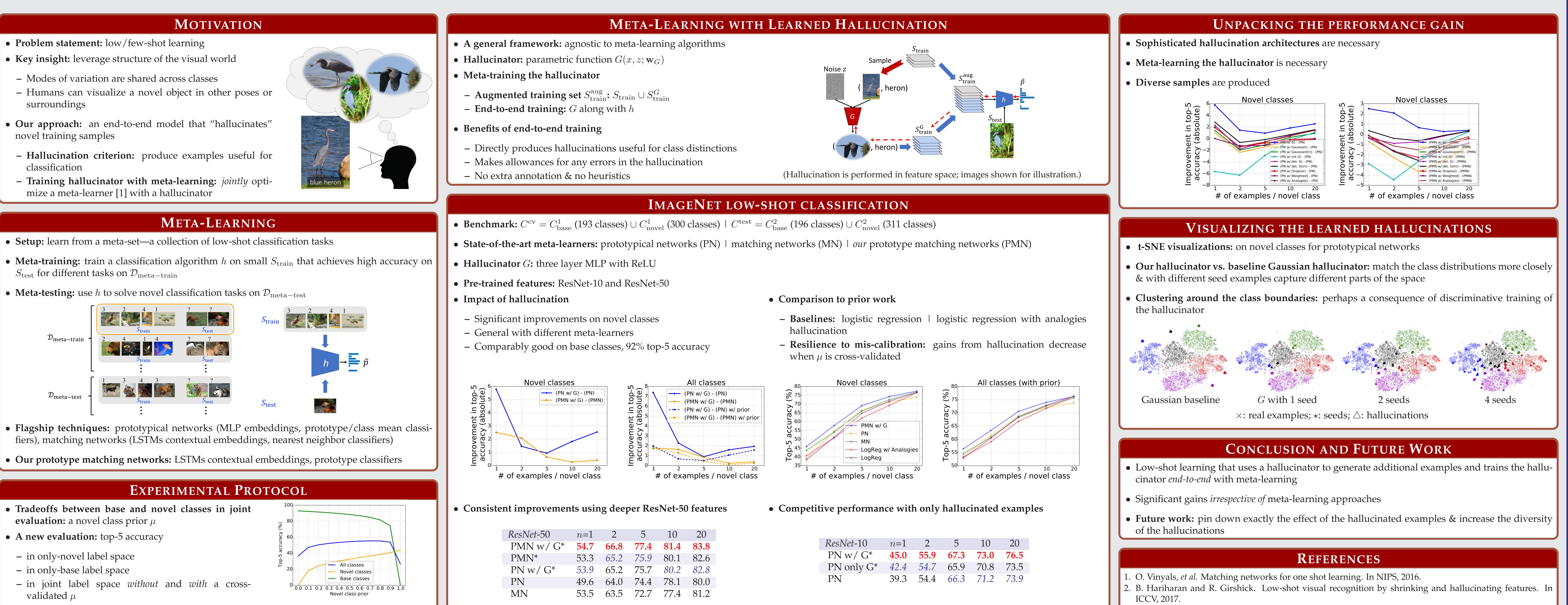


Cornell University

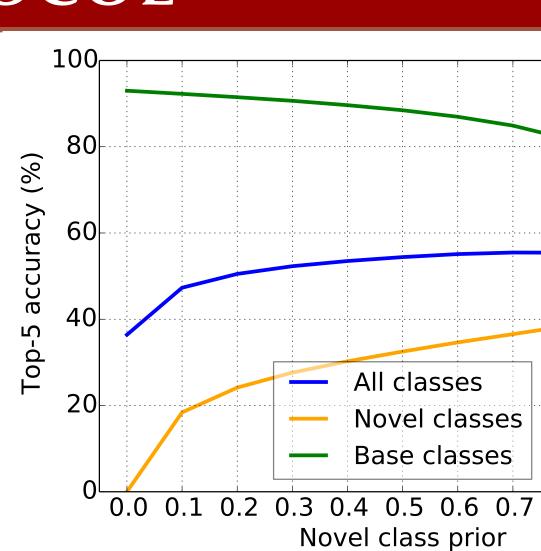
- **Problem statement:** low/few-shot learning
- **Key insight:** leverage structure of the visual world
- Modes of variation are shared across classes
- Humans can visualize a novel object in other poses or surroundings
- **Our approach:** an end-to-end model that "hallucinates" novel training samples
 - Hallucination criterion: produce examples useful for classification
 - Training hallucinator with meta-learning: jointly optimize a meta-learner [1] with a hallucinator

- **Setup:** learn from a meta-set—a collection of low-shot classification tasks
- S_{test} for different tasks on $\mathcal{D}_{\text{meta-train}}$
- Meta-testing: use h to solve novel classification tasks on $\mathcal{D}_{meta-test}$



- fiers), matching networks (LSTMs contextual embeddings, nearest neighbor classifiers)
- Our prototype matching networks: LSTMs contextual embeddings, prototype classifiers

- Tradeoffs between base and novel classes in joint **evaluation:** a novel class prior μ
- A new evaluation: top-5 accuracy
- in only-novel label space
- in only-base label space
- in joint label space *without* and *with* a crossvalidated μ



LOW-SHOT LEARNING FROM IMAGINARY DATA

Yu-Xiong Wang^{1,2} Ross (¹Facebook AI Research (FAIR) Ross Girshick¹

Martial Hebert² ²Carnegie Mellon University

Bharath Hariharan^{1,3} ³Cornell University

